
Sipwise GmbH

The sip:provider PRO Handbook mr3.8.8

Sipwise GmbH
<support@sipwise.com>

The sip:provider PRO Handbook mr3.8.8 ii

Contents

1 Introduction 1

1.1 About this Document . 1

1.2 Getting Help . 1

1.2.1 Phone Support . 1

1.2.2 Ticket System . 1

1.3 What is the sip:provider PRO? . 2

1.4 What is inside the sip:provider PRO? . 2

1.5 Who should use the sip:provider PRO? . 2

2 Platform Architecture 3

2.1 SIP Signaling and Media Relay . 4

2.1.1 SIP and Media Elements . 4

SIP Load-Balancer . 4

SIP Proxy/Registrar . 5

SIP Back-to-Back User-Agent (B2BUA) . 6

SIP App-Server . 6

Media Relay . 7

2.1.2 Basic Call Flows . 8

Endpoint Registration . 8

Basic Call . 11

Session Keep-Alive . 12

Voicebox Calls . 13

2.2 High Availability and Fail-Over . 14

2.2.1 Overview . 14

2.2.2 Core Concepts and Configuration . 14

2.2.3 Administration . 15

2.3 Fax Server Architecture . 15

ii

The sip:provider PRO Handbook mr3.8.8 iii

2.3.1 Software-Based Fax Server . 15

Fax2Mail Architecture . 15

Sendfax Architecture . 16

2.3.2 Hardware-Based Fax Server . 16

Fax2Mail Architecture . 17

Sendfax Architecture . 17

3 Upgrading the sip:provider PRO 19

3.1 Preparation . 19

3.2 Upgrade from previous release . 21

3.3 Upgrade from 2.8 LTS . 23

4 Installation 27

4.1 Hardware Specifications . 27

4.1.1 Dimensions and Weight . 27

4.1.2 Front View . 28

4.1.3 Back View . 29

4.2 Installation Prerequisites . 30

4.3 Rack-Mount Installation . 30

4.4 Power Supply Cabling . 31

4.5 Network Cabling . 31

5 Administrative Configuration 32

5.1 Creating a Customer . 32

5.2 Creating a Subscriber . 37

5.3 Domain Preferences . 42

5.4 Subscriber Preferences . 44

5.5 Creating Peerings . 45

5.5.1 Creating Peering Groups . 45

5.5.2 Creating Peering Servers . 47

iii

The sip:provider PRO Handbook mr3.8.8 iv

5.5.3 Authenticating and Registering against Peering Servers . 52

Proxy-Authentication for outbound calls . 52

Registering at a Peering Server . 55

5.6 Configuring Rewrite Rule Sets . 55

5.6.1 Inbound Rewrite Rules for Caller . 58

5.6.2 Inbound Rewrite Rules for Callee . 60

5.6.3 Outbound Rewrite Rules for Caller . 61

5.6.4 Outbound Rewrite Rules for Callee . 62

5.6.5 Emergency Number Handling . 62

5.6.6 Assigning Rewrite Rule Sets to Domains and Subscribers . 63

5.6.7 Creating Dialplans for Peering Servers . 64

6 Advanced Subscriber Configuration 65

6.1 Access Control for SIP Calls . 65

6.1.1 Block Lists . 65

Block Modes . 66

Block Lists . 66

Block Anonymous Numbers . 67

6.1.2 NCOS Levels . 67

Creating NCOS Levels . 68

Creating Rules per NCOS Level . 69

Assigning NCOS Levels to Subscribers/Domains . 71

Assigning NCOS Level for Forwarded Calls to Subscribers/Domains . 72

6.1.3 IP Address Restriction . 72

6.2 Call Forwarding and Call Hunting . 73

6.2.1 Setting a simple Call Forward . 73

6.2.2 Advanced Call Hunting . 74

Configuring Destination Sets . 74

Configuring Time Sets . 76

iv

The sip:provider PRO Handbook mr3.8.8 v

6.3 Limiting Subscriber Preferences via Subscriber Profiles . 77

6.3.1 Subscriber Profile Sets . 77

6.4 Voicemail System . 79

6.4.1 Accessing the IVR Menu . 79

Mapping numbers and codes to IVR access . 79

External IVR access . 80

6.4.2 IVR Menu Structure . 80

6.5 Configuring Subscriber IVR Language . 81

6.6 Sound Sets . 82

6.6.1 Configuring Early Reject Sound Sets . 83

6.7 Conference System . 87

6.7.1 Configuring Call Forward to Conference . 87

6.7.2 Configuring Conference Sound Sets . 88

6.7.3 Entering the Conference with a PIN . 89

7 Customer Self-Care Interfaces 90

7.1 The Customer Self-Care Web Interface . 90

7.1.1 Login Procedure . 90

7.1.2 Site Customization . 90

7.2 The Vertical Service Code Interface . 90

7.3 The Voicemail Interface . 91

8 Billing Configuration 93

8.1 Billing Data Import . 93

8.1.1 Creating Billing Profiles . 93

8.1.2 Creating Billing Fees . 95

8.1.3 Creating Off-Peak Times . 97

8.1.4 Prepaid Accounting . 99

8.1.5 Fraud Detection and Locking . 100

8.2 Billing Data Export . 100

v

The sip:provider PRO Handbook mr3.8.8 vi

8.2.1 File Name Format . 101

8.2.2 File Format . 101

File Header Format . 101

File Body Format for Call Detail Records (CDR) . 102

File Body Format for Event Detail Records (EDR) . 106

File Trailer Format . 107

8.2.3 File Transfer . 108

9 Invoices and invoice templates 109

9.1 Invoices management . 109

9.2 Invoice templates . 111

9.2.1 Invoice Templates management . 111

9.2.2 Invoice Template content . 112

Layers . 113

Edit SVG XML source . 115

Change logo image . 117

9.2.3 Save and preview invoice template content. 118

9.3 Invoices generation . 120

10 Email templates 123

10.1 Email events . 123

10.2 Initial template values and template variables . 123

10.3 Password reset email template . 123

10.4 New subscriber notification email template . 124

10.5 Invoice email template . 124

10.6 Email templates management . 126

11 Provisioning interfaces 129

11.1 REST API . 129

11.2 SOAP and XMLRPC API . 129

vi

The sip:provider PRO Handbook mr3.8.8 vii

12 Configuration Framework 131

12.1 Configuration templates . 131

12.1.1 .tt2 and .customtt.tt2 files . 131

12.1.2 .prebuild and .postbuild files . 132

12.1.3 .services files . 133

12.2 config.yml, constants.yml and network.yml files . 134

12.3 ngcpcfg and its command line options . 134

12.3.1 apply . 134

12.3.2 build . 134

12.3.3 commit . 134

12.3.4 decrypt . 135

12.3.5 diff . 135

12.3.6 encrypt . 135

12.3.7 help . 135

12.3.8 initialise . 135

12.3.9 pull . 135

12.3.10push . 135

12.3.11services . 135

12.3.12status . 136

13 Network Configuration 137

13.1 General Structure . 137

13.2 Available Host Options . 138

14 Advanced Network Configuration 139

14.1 Extra SIP Sockets . 139

14.2 Extra SIP and RTP Sockets . 140

15 Security and Maintenance 142

15.1 Sipwise SSH access to sip:provider PRO . 142

vii

The sip:provider PRO Handbook mr3.8.8 viii

15.2 Firewalling . 142

15.3 Password management . 143

15.4 SSL certificates. 144

15.5 sip:provider PRO Backup . 145

15.5.1 What data to back up . 145

15.5.2 The built-in backup solution . 145

15.6 Recovery . 146

15.7 Reset Database . 146

15.8 Synchronize database . 146

15.9 System requirements and performance . 148

15.10Troubleshooting . 151

16 Monitoring and Alerting 153

16.1 Internal Monitoring . 153

16.2 Statistics Dashboard . 153

16.3 External Monitoring Using SNMP . 153

16.3.1 Overview and Initial Setup . 153

16.3.2 Details . 154

A Cloud PBX 159

A.1 Configuring the Device Management . 159

A.1.1 Setting up Device Models . 160

A.1.2 Uploading Device Firmwares . 163

A.1.3 Creating Device Configurations . 164

A.1.4 Creating Device Profiles . 166

A.2 Preparing PBX Rewrite Rules . 167

A.2.1 Inbound Rewrite Rules for Caller . 168

A.2.2 Inbound Rewrite Rules for Callee . 168

A.2.3 Outbound Rewrite Rules for Caller . 170

A.3 Creating Customers and Pilot Subscribers . 171

viii

The sip:provider PRO Handbook mr3.8.8 ix

A.3.1 Creating a PBX Customer . 171

A.3.2 Creating a PBX Pilot Subscriber . 175

A.4 Managing a Customer PBX . 181

A.4.1 Creating more Subscribers . 182

A.4.2 Assigning Subscribers to Devices . 187

Synchronizing a PBX Device for initial Usage . 190

A.4.3 Configuring Sound Sets for the Customer PBX . 193

Uploading a Music-on-Hold File . 194

Uploading Auto-Attendant Sound Files . 195

A.4.4 Configuring the Auto Attendant . 196

Preparing the Sound Set . 196

Configuring the Auto Attendant Slots . 197

Activating the Auto Attendant . 197

A.5 Device Auto-Provisioning Security . 198

A.5.1 Server Certificate Authentication . 198

A.5.2 Client Certificate Authentication . 200

A.6 Device Bootstrap and Resync Workflows . 200

A.6.1 Cisco SPA Device Bootstrap . 201

Initial Bootstrapping . 201

Subsequent Device Resyncs . 201

A.6.2 Panasonic Device Bootstrap . 203

Initial Bootstrapping . 203

Factory Reset . 203

Subsequent Device Resyncs . 204

A.6.3 Yealink Device Bootstrap . 204

Initial Bootstrapping . 204

Factory Enable Yealink Auto-Provisioning . 205

Subsequent Device Resyncs . 205

ix

The sip:provider PRO Handbook mr3.8.8 x

B Sipwise Clients and Apps 206

B.1 sip:phone Mobile App . 206

B.1.1 Zero Config Launcher . 206

3rd Party Sign-Up Form . 207

3rd Party Launch Handler . 210

B.1.2 Mobile Push Notification . 210

Architecture . 211

Configuring the Push Daemon . 212

C NGCP configs overview 213

C.1 config.yml overview . 213

C.1.1 asterisk . 213

C.1.2 backuptools . 214

C.1.3 cdrexport . 215

C.1.4 checktools . 216

C.1.5 cleanuptools . 217

C.1.6 database . 218

C.1.7 faxserver . 218

C.1.8 general . 219

C.1.9 heartbeat . 219

C.1.10 intercept . 220

C.1.11 kamailio . 220

C.1.12 mediator . 223

C.1.13 nginx . 224

C.1.14 ntp . 224

C.1.15 ossbss . 224

C.1.16 pbx (only with additional cloud PBX module installed) . 226

C.1.17 prosody . 226

C.1.18 pushd . 226

x

The sip:provider PRO Handbook mr3.8.8 xi

C.1.19 qos . 227

C.1.20 rate-o-mat . 227

C.1.21 redis . 228

C.1.22 reminder . 228

C.1.23 rsyslog . 229

C.1.24 rtpproxy . 229

C.1.25 security . 230

C.1.26 sems . 230

C.1.27 sshd . 231

C.1.28 voisniff . 232

C.1.29 www_admin . 232

C.1.30 www_csc . 234

xi

The sip:provider PRO Handbook mr3.8.8 1 / 236

1 Introduction

1.1 About this Document

This document describes the architecture and the operational steps to install, operate and modify the Sipwise sip:provider PRO.

In the various chapters, it describes the system architecture, the installation and upgrade procedures and the initial configuration

steps to get your first users online. It then dives into advanced preference configurations like rewrite rules, call blockings, call

forwards etc.

There is a description of the customer self-care interface, how to configure the billing system and how to provision the system via

the provided APIs.

Finally it describes the internal configuration framework, the network configuration and gives hints about tweaking the system for

security and performance.

1.2 Getting Help

1.2.1 Phone Support

Depending on your support contract, you are eligible to contact our Support Team by phone either in business hours or around

the clock. Business hours refer to the UTC+1 time zone (Europe/Vienna). Please check your support contract to check the type

of support you’ve purchased.

Before calling our Support Team, please also open a ticket in our Ticket System and provide as much detail as you can for us

to understand the problems, fix them and investigate the root cause. Please provide the ticket number assigned to your newly

created ticket when asked by our support personnel on the phone.

Phone numbers, Ticket System URL and account information can be found in your support contract. Please make this information

available to the persons in your company maintaining the sip:provider PRO.

1.2.2 Ticket System

Depending on your support contract, you can create either a limited or an unlimited amount of support tickets on our Web based

Ticket System. Please provide as much information as possible when opening a ticket, especially the following:

• WHAT is affected (e.g. the whole system is unreachable or customers can’t register or place calls)

• WHO is affected (e.g. all customers, only parts of it, and WHICH parts - only customers in a specific domain or customers with

specific devices etc)

• WHEN did the problem occur (time frames, or after the firmware of specific devices types have been updated etc)

Our Support Team will ask further questions via the Ticket System along the way of troubleshooting your issue. Please provide

the information as soon as possible in order to solve your issue in a timely manner.

1

The sip:provider PRO Handbook mr3.8.8 2 / 236

1.3 What is the sip:provider PRO?

The sip:provider PRO is a SIP based Open Source Class5 VoIP soft-switch platform providing rich telephony services. It offers

a wide range of features to end users (call forwards, voicemail, conferencing, call blocking, click-to-dial, call-lists showing near-

realtime accounting information etc.), which can be configured by them using the customer-self-care web interface. For operators,

it offers a fully web-based administrative panel, allowing them to configure users, peerings, billing profiles etc., as well as viewing

real-time statistics of the system. For tight integration into existing infrastructures, it provides a powerful REST API.

The sip:provider PRO comes pre-installed on two servers. Apart from your product specific configuration, there is no initial

configuration or installation to be done to get started.

1.4 What is inside the sip:provider PRO?

Opposed to other free VoIP software, the sip:provider PRO is not a single application, but a whole software platform, the Sipwise

NGCP (Sipwise Next Generation Communication Platform), which is based on Debian GNU/Linux.

Using a highly modular design approach, the NGCP leverages popular open-source software like MySQL, NGINX, Catalyst, Ka-

mailio, SEMS, Asterisk etc. as its core building blocks. These blocks are glued together using optimized and proven configurations

and work-flows and are complemented by building blocks developed by Sipwise to provide fully-featured and easy to operate VoIP

services.

The installed applications are managed by the NGCP Configuration Framework, which allows to change system parameters in

a single place, so administrators don’t need to have any knowledge of the dozens of different configuration files of the different

packages. This provides a very easy and bullet-proof way of operating, changing and tweaking the otherwise quite complex

system.

Once configured, integrated web interfaces are provided for both end users and administrators to use the sip:provider PRO. By

using the provided provisioning and billing APIs, it can be integrated tightly into existing OSS/BSS infrastructures to optimize

work-flows.

1.5 Who should use the sip:provider PRO?

The sip:provider PRO is specifically tailored to companies who want to provide fully-featured SIP based VoIP service without having

to go through the steep learning curve of SIP signalling, integrating the different building blocks to make them work together in a

reasonable way. The sip:provider PRO is already deployed all around the world by all kinds of VoIP operators, using it as Class5

soft-switch, as Class4 termination platform or even as Session Border Controller with all kinds of access networks, like Cable,

DSL, WiFi and Mobile networks.

2

The sip:provider PRO Handbook mr3.8.8 3 / 236

2 Platform Architecture

The sip:provider PRO platform consists of two identical appliances working in active/standby mode. The components of a node

are outlined in the following figure:

Figure 1: Architecture Overview

The main building blocks of the sip:provider PRO are:

• SIP Signaling and Media Relay

• Provisioning

• Mediation and Billing

• Monitoring and Alerting

• High Availability and Fail-Over

3

The sip:provider PRO Handbook mr3.8.8 4 / 236

2.1 SIP Signaling and Media Relay

In SIP-based communication networks, it is important to understand that the signaling path (e.g. for call setup and tear-down) is

completely independent of the media path. On the signaling path, the involved endpoints negotiate the call routing (which user

calls which endpoint, and via which path - e.g. using SIP peerings or going through the PSTN - the call is established) as well as

the media attributes (via which IPs/ports are media streams sent and which capabilities do these streams have - e.g. video using

H.261 or Fax using T.38 or plain voice using G.711). Once the negotiation on signaling level is done, the endpoints start to send

their media streams via the negotiated paths.

2.1.1 SIP and Media Elements

The components involved in SIP and Media on the sip:provider PRO are shown in the following figure:

Figure 2: SIP and Media Relay Components

SIP Load-Balancer

The SIP load-balancer is a Kamailio instance acting as ingress and egress point for all SIP traffic to and from the system. It’s a

high-performance SIP proxy instance based on Kamailio and is responsible for sanity checks of inbound SIP traffic. It filters broken

SIP messages, rejects loops and relay attempts and detects denial-of-service and brute-force attacks and gracefully handles them

to protect the underlying SIP elements. It also performs the conversion of TLS to internal UDP and vice versa for secure signaling

between endpoints and the sip:provider PRO, and does far-end NAT traversal in order to enable signaling through NAT devices.

The load-balancer is the only SIP element in the system which exposes a SIP interface to the public network. Its second leg binds

in the switch-internal network to pass traffic from the public internet to the corresponding internal components.

4

The sip:provider PRO Handbook mr3.8.8 5 / 236

The name load-balancer comes from the fact that when scaling out a sip:provider PRO beyond just one pair of servers, the

load-balancer instance becomes its own physical node and then handles multiple pairs of proxies behind it.

On the public interface, the load-balancer listens on port 5060 for UDP and TCP, as well as on 5061 for TLS connections. On the

internal interface, it speaks SIP via UDP on port 5060 to the other system components, and listens for XMLRPC connections on

TCP port 5060, which is used by the OSSBSS system to control the daemon.

Its config files reside in /etc/ngcp-config/templates/etc/kamailio/lb/, and changes to these files are applied

by executing ngcpcfg apply.

Tip

The SIP load-balancer can be managed via the commands monit start lb, monit stop lb and monit restart

lb. Its status can be queried by executing monit summary | grep \`lb\`. Also ngcp-kamctl lb and ngcp-

sercmd lb are provided for querying kamailio functions, for example: ngcp-sercmd lb htable.dump ipban.

SIP Proxy/Registrar

The SIP proxy/registrar (or short proxy) is the work-horse of the sip:provider PRO. It’s also a separate Kamailio instance running

in the switch-internal network and is connected to the provisioning database via MySQL, authenticates the endpoints, handles

their registrations on the system and does the call routing based on the provisioning data. For each call, the proxy looks up the

provisioned features of both the calling and the called party (either subscriber or domain features if it’s a local caller and/or callee,

or peering features if it’s from/to an external endpoint) and acts accordingly, e.g. by checking if the call is blocked, by placing

call-forwards if applicable and by normalizing numbers into the appropriate format, depending on the source and destination of a

call.

It also writes start- and stop-records for each call, which are then transformed into call detail records (CDR) by the mediation

system.

If the endpoints indicate negotiation of one or more media streams, the proxy also interacts with the Media Relay to open, change

and close port pairs for relaying media streams over the sip:provider PRO, which is especially important to traverse NAT.

The proxy listens on UDP port 5062 in the system-internal network. It cannot be reached directly from the outside, but only via the

SIP load-balancer.

Its config files reside in /etc/ngcp-config/templates/etc/kamailio/proxy/, and changes to these files are ap-

plied by executing ngcpcfg apply.

Tip

The SIP proxy can be controlled via the commands monit start proxy, monit stop proxy and monit restart

proxy. Its status can be queried by executing monit summary | grep \`proxy\`. Also ngcp-kamctl proxy

and ngcp-sercmd proxy are provided for querying kamailio functions, for example: ngcp-kamctl proxy ul show.

5

The sip:provider PRO Handbook mr3.8.8 6 / 236

SIP Back-to-Back User-Agent (B2BUA)

The SIP B2BUA (also called SBC within the system) decouples the first call-leg (calling party to sip:provider PRO) from the second

call-leg (sip:provider PRO to the called party).

The software part used for this element is a commercial version of SEMS, with the main difference to the open-source version that

it includes a replication module to share its call states with the stand-by node.

This element is typically optional in SIP systems, but it is always used for SIP calls (INVITE) that don’t have the sip:provider

PRO as endpoint. It acts as application server for various scenarios (e.g. for feature provisioning via Vertical Service Codes and

as Conferencing Server) and performs the B2BUA decoupling, topology hiding, caller information hiding, SIP header and Media

feature filtering, outbound registration, outbound authentication, Prepaid accounting and call length limitation as well as Session

Keep-Alive handler.

Due to the fact that typical SIP proxies (like the load-balancer and proxy in the sip:provider PRO) do only interfere with the content

of SIP messages where it’s necessary for the SIP routing, but otherwise leave the message intact as received from the endpoints,

whereas the B2BUA creates a new call leg with a new SIP message from scratch towards the called party, SIP message sizes are

reduced significantly by the B2BUA. This helps to bring the message size under 1500 bytes (which is a typical default value for the

MTU size) when it leaves the sip:provider PRO. That way, chances of packet fragmentation are quite low, which reduces the risk of

running into issues with low-cost SOHO routers at customer sides, which typically have problems with UDP packet fragmentation.

The SIP B2BUA only binds to the system-internal network and listens on UDP port 5080 for SIP messages from the load-balancer

or the proxy, on UDP port 5040 for control messages from the cli tool and on TCP port 8090 for XMLRPC connections from the

OSSBSS to control the daemon.

Its configuration files reside in /etc/ngcp-config/templates/etc/ngcp-sems, and changes to these files are applied

by executing ngcpcfg apply.

Tip

The SIP B2BUA can be controlled via the commands monit start sbc, monit stop sbc and monit restart

sbc. Its status can be queried by executing monit summary | grep \`sbc\`

SIP App-Server

The SIP App-Server is an Asterisk instance used for voice applications like Voicemail and Reminder Calls. It is also used in the

software-based Faxserver solution to transcode SIP and RTP into the IAX protocol and vice versa, in order to talk to the Software

Fax Modems. Asterisk uses the MySQL database as a message spool for voicemail, so it doesn’t directly access the file system

for user data. The voicemail plugin is a slightly patched version based on Asterisk 1.4 to make Asterisk aware of the sip:provider

PRO internal UUIDs for each subscriber. That way a SIP subscriber can have multiple E164 phone numbers, but all of them

terminate in the same voicebox.

The App-Server listens on the internal interface on UDP port 5070 for SIP messages and by default uses media ports in the range

from UDP port 10000 to 20000.

The configuration files reside in /etc/ngcp-config/templates/etc/asterisk, and changes to these files are applied

by executing ngcpcfg apply.

6

The sip:provider PRO Handbook mr3.8.8 7 / 236

Tip

The SIP App-Server can be controlled via the commands monit start asterisk, monit stop asterisk and

monit restart asterisk. Its status can be queried by executing monit summary | grep \`asterisk\`

Media Relay

The Media Relay (also called rtpengine) is a Kernel-based packet relay, which is controlled by the SIP proxy. For each media

stream (e.g. a voice and/or video stream), it maintains a pair of ports in the range of port number 30000 to 40000. When the media

streams are negotiated, rtpengine opens the ports in user-space and starts relaying the packets to the addresses announced by

the endpoints. If packets arrive from different source addresses than announced in the SDP body of the SIP message (e.g. in

case of NAT), the source address is implicitly changed to the address the packets are received from. Once the call is established

and the rtpengine has received media packets from both endpoints for this call, the media stream is pushed into the kernel and is

then handled by a custom Sipwise iptables module to increase the throughput of the system and to reduce the latency of media

packets.

The rtpengine internally listens on UDP port 12222 for control messages from the SIP proxy. For each media stream, it opens two

pairs of UDP ports on the public interface in the range of 30000 and 40000 per default, one pair on odd port numbers for the media

data, and one pair on the next even port numbers for meta data, e.g. RTCP in case of RTP streams. Each endpoint communicates

with one dedicated port per media stream (opposed to some implementations which use one pair for both endpoints) to avoid

issues in determining where to send a packet to. The rtpengine also sets the QoS/ToS/DSCP field of each IP packet it sends to a

configured value, 184 (0xB8, expedited forwarding) by default.

The kernel-internal part of the rtpengine is facilitated through an iptables module having the target name RTPENGINE. If any ad-

ditional firewall or packet filtering rules are installed, it is imperative that this rule remains untouched and stays in place. Otherwise,

if the rule is removed from iptables, the kernel will not be able to forward the media packets and forwarding will fall back to the

user-space daemon. The packets will still be forwarded normally, but performance will be much worse under those circumstances,

which will be especially noticeable when a lot of media streams are active concurrently. See the section on Firewalling for more

information.

The rtpengine configuration file is /etc/ngcp-config/templates/etc/default/ngcp-rtpengine-daemon, and

changes to this file are applied by executing ngcpcfg apply. The UDP port range can be configured via the config.yml

file under the section rtpproxy. The QoS/ToS value can be changed via the key qos.tos_rtp.

Tip

The Media Relay can be controlled via the commands monit start rtpengine, monit stop rtpengine and

monit restart rtpengine. Its status can be queried by executing monit summary | grep \`rtpengine\`

7

The sip:provider PRO Handbook mr3.8.8 8 / 236

2.1.2 Basic Call Flows

Endpoint Registration

Figure 3: Registration Call-Flow

The subscriber endpoint starts sending a REGISTER request, which gets challenged by a 401. After calculating the response of

the authentication challenge, it sends the REGISTER again, including the authentication response. The SIP proxy looks up the

credentials of the subscriber in the database, does the same calculation, and if the result matches the one from the subscriber,

the registration is granted.

The SIP proxy writes the content of the Contact header (e.g. sip:me@1.2.3.4:1234;transport=UDP) into its location

table (in case of NAT the content is changed by the SIP load-balancer to the IP/port from where the request was received), so

it knows where the reach a subscriber in case on an inbound call to this subscriber (e.g. sip:someuser@example.org is

mapped to sip:me@1.2.3.4:1234;transport=UDP and sent out to this address).

If NAT is detected, the SIP proxy sends a OPTION message to the registered contact every 30 seconds, in order to keep the NAT

binding on the NAT device open. Otherwise, for subsequent calls to this contact, the sip:provider PRO wouldn’t be able to reach

the endpoint behind NAT (NAT devices usually drop a UDP binding after not receiving any traffic for ~30-60 seconds).

8

The sip:provider PRO Handbook mr3.8.8 9 / 236

By default, a subscriber can register 5 contacts for an Address of Record (AoR, e.g. sip:someuser@example.org).

9

The sip:provider PRO Handbook mr3.8.8 10 / 236

10

The sip:provider PRO Handbook mr3.8.8 11 / 236

Basic Call

11

The sip:provider PRO Handbook mr3.8.8 12 / 236

The calling party sends an INVITE (e.g. sip:someuser@example.org) via the SIP load-balancer to the SIP proxy. The proxy

replies with an authorization challenge in the 407 response, and the calling party sends the INVITE again with authentication

credentials. The SIP proxy checks if the called party is a local user. If it is, and if there is a registered contact found for this

user, then (after various feature-related tasks for both the caller and the callee) the Request-URI is replaced by the URI of the

registered contact (e.g. sip:me@1.2.3.4:1234;transport=UDP). If it’s not a local user but a numeric user, a proper

PSTN gateway is being selected by the SIP proxy, and the Request-URI is rewritten accordingly (e.g. sip:+43123456789@

2.3.4.5:5060).

Once the proxy has finished working through the call features of both parties involved and has selected the final destination for the

call, and - optionally - has invoked the Media Relay for this call, the INVITE is sent to the SIP B2BUA. The B2BUA creates a new

INVITE message from scratch (using a new Call-ID and a new From-Tag), copies only various and explicitly allowed SIP headers

from the old message to the new one, filters out unwanted media capabilities from the SDP body (e.g. to force audio calls to use

G.711 as a codec) and then sends the new message via the SIP load-balancer to the called party.

SIP replies from the called party are passed through the elements back to the calling party (replacing various fields on the B2BUA

to match the first call leg again). If a reply with an SDP body is received by the SIP proxy (e.g. a 183 or a 200), the Media Relay

is invoked again to prepare the ports for the media stream.

Once the 200 is routed from the called party to the calling party, the media stream is fully negotiated, and the endpoints can start

sending traffic to each outer (either end-to-end or via the Media Relay). Upon reception of the 200, the SIP proxy writes a start

record for the accounting process. The 200 is also acknowledged with an ACK message from the calling party to the called party,

according to the SIP 3-way handshake.

Either of the parties can tear down the media session at any time by sending a BYE, which is passed through to the other

party. Once the BYE reaches the SIP proxy, it instructs the Media Relay to close the media ports, and it writes a stop record for

accounting purposes. Both the start- and the stop-records are picked up by the mediator service in a regular interval and are

converted into a Call Detail Record (CDR), which will be rated by the rate-o-mat process and can be billed to the calling party. For

calls made by subscribers on a prepaid plan, rating occurs at call runtime and is actually done by the B2BUA (which is necessary

to properly support multiple parallel calls by the same subscriber). The final rating data is then passed on to rate-o-mat which will

update the CDRs accordingly.

Session Keep-Alive

The SIP B2BUA acts as refresher for the Session-Timer mechanism as defined in RFC 4028. If the endpoints indicate support

for the UPDATE method during call-setup, then the SIP B2BUA will use an UPDATE message if enabled per peer, domain or

subscriber via Provisioning to check if the endpoints are still alive and responsive. Both endpoints can renegotiate the timer

within a configurable range. All values can be tuned using the Admin Panel or the APIs using Peer-, Domain- and Subscriber-

Preferences.

Tip

Keep in mind that the values being used in the signaling are always half the value being configured. So if you want to send a

keep-alive every 300 seconds, you need to provision sst_expires to 600.

If one of the endpoints doesn’t respond to the keep-alive messages or answers with 481 Call/Transaction Does Not

Exist, then the call is torn down on both sides. This mechanism prevents excessive over-billing of calls if one of the endpoints

12

mailto:43123456789@2.3.4.5
mailto:43123456789@2.3.4.5

The sip:provider PRO Handbook mr3.8.8 13 / 236

is not reachable anymore or "forgets" about the call. The BYE message sent by the B2BUA triggers a stop-record for accounting

and also closes the media ports on the Media Relay to stop the call.

Beside the Session-Timer mechanism to prevent calls from being lost or kept open, there is a maximum call length of 21600

seconds per default defined in the B2BUA. This is a security/anti-fraud mechanism to prevent overly long calls causing excessive

costs.

Voicebox Calls

Calls to the Voicebox (both for callers leaving a voicemail message and for voicebox owners managing it via the IVR menu) are

passed directly from the SIP proxy to the App-Server without a B2BUA. The App-Server maintains its own timers, so there is no

risk of over-billing or overly long calls.

In such a case where an endpoint talks via the Media Relay to a system-internal endpoint, the Media Relay bridges the media

streams between the public in the system-internal network.

In case of an endpoint leaving a new message on the voicebox, the Message-Waiting-Indication (MWI) mechanism triggers the

sending of a unsolicited NOTIFY message, passing the number of new messages in the body. As soon as the voicebox owner

dials into his voicebox (e.g. by calling sip:voicebox@example.org from his SIP account), another NOTIFY message is

sent to his devices, resetting the number of new messages.

13

The sip:provider PRO Handbook mr3.8.8 14 / 236

Important

The sip:provider PRO does not require your device to subscribe to the MWI service by sending a SUBSCRIBE (it would

rather reject it). On the other hand, the endpoints need to accept unsolicited NOTIFY messages (that is, a NOTIFY

without a valid subscription), otherwise the MWI service will not work with these endpoints.

2.2 High Availability and Fail-Over

2.2.1 Overview

The two servers of a complete sip:provider PRO system form a pair, a simple cluster with two nodes. Their names are fixed as

sp1 and +sp2, however neither of them is inherently a first or a second. They’re both equal and identical and either can be the

active node of the cluster at any time. Only one node is always ever active, the other one is in standby mode and doesn’t perform

any active functions.

High availability is achieved through constant communication between the two nodes and constant state replication from the active

node to the standby one. Whenever the standby node detects that the other node has become unresponsive, has gone offline

and has failed in any other way, it will proceed with taking over all resources and becoming the active node, with all operations

resuming where the failed node has left off. Through that, the system will remain fully operational and service disruption will be

minimal.

When the failed node comes back to life, it will become the new standby node, replicate everything that has changed in the

meantime from the new active node, and then the cluster will be back in fully highly available state.

Tip

The login banner at the SSH shell provides information about whether the local system is currently the active one or the standby

one. See Section 2.2.3 for other ways to differentiate between the active and the standby node.

2.2.2 Core Concepts and Configuration

The direct Ethernet crosslink between the two nodes provides the main mechanism of HA communication between them. All state

replication happens over this link. Additionally, the HA daemon heartbeat uses this link to communicate with the other node to see

if it’s still alive and active. A break in this link will therefore result in a split brain scenario, with either node trying to become the

active one. This is to be avoided at all costs.

The config.yml file allows specification of a list of ping nodes under the key heartbeat.pingnodes, which are used by

heartbeat to determine if local network communications are healthy. Both servers will then constantly compare the number of

locally reachable ping nodes with each other, and if the standby server is able to reach more of them, then it will become the active

one.

The main resource that heartbeat manages is the shared service IP address. Each node has its own static IP address configured

on its first Ethernet interface (eth0), which is done outside of the sip:provider PRO configuration framework (i.e. in the Debian-

specific config file /etc/network/interfaces). The shared service IP is specified in network.yml at the key hosts.

sp1|sp2.eth0.shared_ip. Heartbeat will configure it as a secondary IP address on the first Ethernet interface (eth0:0)

14

The sip:provider PRO Handbook mr3.8.8 15 / 236

on the active node and will deconfigure it on the standby node. Thus, all network communications with this IP address will always

go only to the currently active node.

2.2.3 Administration

The current status of the local sip:provider PRO node can be determined using the ngcp-check_active shell command.

This command produces no output, but returns an exit status of 0 for the active node and 1 for the standby node. A more complete

shell command to produce visible output could be: ngcp-check_active && echo active || echo standby

To force a currently active node into standby mode, use the command /usr/lib64/heartbeat/hb_standby. For the

opposite effect, use the command /usr/lib64/heartbeat/hb_takeover. This will also always affect the state of the

other node, as the system automatically makes sure that always only one node is active at a time.

2.3 Fax Server Architecture

The Fax Server comes in two flavors:

• The software-based Fax Server (included in the sip:provider PRO)

• The hardware-based Fax Server (optional module for the sip:provider PRO)

The following chapters describe the architectures of the two approaches and its pros and cons.

2.3.1 Software-Based Fax Server

The software-based Fax Server is included on the platform and requires no additional hardware. That way, one can provide a

cost-effective paper-free office solution with the sip:provider PRO. The drawback is that the software- based solution only supports

G.711 (no T.38 Fax-over-IP), so it is very dependent on the internet connection quality of the involved endpoints, because G.711

based solutions are prone to packet-loss on the IP level.

Fax2Mail Architecture

In order to receive faxes via email, a phone call is connected from the sender to the software fax modem on the sip:provider

PRO via the elements outlined in the picture below, where the received fax document is converted to the format the receiver has

configured (either PS, PDF or TIFF). The email is delivered to one or more configured addresses.

15

The sip:provider PRO Handbook mr3.8.8 16 / 236

Sendfax Architecture

To send faxes via the sip:provider PRO, the sender needs a hylafax-compliant software client or printer driver (e.g. jhylafax). When

sending a document (either TXT, PS or PDF) from the client or directly via the hylafax printer driver, the document is uploaded

to the Faxserver instance on the sip:provider PRO via the Hylafax protocol (an FTP-like transport protocol). The document is

converted to a suitable internal TIF format and is sent via the components outlined in the picture below to the specified phone

number, where a normal fax device can receive the document.

2.3.2 Hardware-Based Fax Server

Compared to the software-based Fax Server, the hardware-based Fax Server requires additional hardware components, namely

a Dialogic DSP card for transcoding fax documents to ISDN and vice versa, as well as ISDN gateways to transcode ISDN to SIP

16

The sip:provider PRO Handbook mr3.8.8 17 / 236

and RTP or T.38 and vice versa. The cons of the additional costs are outweighed by the pros of T.38 support, which is more

resilient against packet loss on IP level, and more reliable fax transmission due to dedicated and specialized hardware.

Fax2Mail Architecture

In order to receive faxes via email, a phone call is connected from the sender to the internal ISDN gateway, which converts the

call to a pure ISDN call. The ISDN call is transmitted via a local loop to the DSP card, which in hardware receives and prepares

the fax document. This document is then passed on to the fax receiving element which converts it to the final format the customer

configured, before it’s been sent out via email.

Sendfax Architecture

In the same way as the software-based Fax Server, but leveraging the hardware components, a fax document is uploaded to the

sip:provider PRO and transmitted to the dialed phone number, where the data is delivered to via G.711 or T.38 and is received on

the other end as Class1 or Class2 fax.

17

The sip:provider PRO Handbook mr3.8.8 18 / 236

18

The sip:provider PRO Handbook mr3.8.8 19 / 236

3 Upgrading the sip:provider PRO

3.1 Preparation

Make sure you’re prepared to spend two hours or so upgrading the system. There will be service interruptions, so also notify the

customer and get their approval.

Check the system for locally modified files (move them to appropriate customtt.tt2 files if necessary):

ngcp-status --integrity

Try to find local changes to the template files by issuing:

find /etc/ngcp-config -name *customtt.tt2

You will also need to find the dpkg-dist files under the templates files because people sometimes forget about creating customtt

files and edit tt2 files directly. That makes upgrades not to replace the tt2 files. If so, you need to treat the tt2 files as if they were

customtt files and make sure you merge the new templates with the changes of the old ones.

find /etc/ngcp-config -name *.tt2.dpkg-dist

Also, please check/clean old dpkg backup files (just in case if previous person did the previous step not carefully enough). Normally

the list should be empty:

find /etc/ngcp-config -name *.tt2.dpkg*

You will have to understand why the changes are there and if they are still needed after the upgrade. You should create a ticket in

the bugtracker if there isn’t one yet.

Log into the two servers. Use their real IPs so you can switch the cluster forth and back later on. Make sure the cluster status is

ok - on both nodes issue:

• monit summary - one should be running all services, the other all but rtpengine, lb, proxy, sbc, mediator and rate-o-mat

• cl_status rscstatus - one (with all services running) should print "all", the other "none"

• mysql -e "show slave status\G" - look for the following:

Slave_IO_Running: Yes

Slave_SQL_Running: Yes

Seconds_Behind_Master: 0

• ngcpcfg status - should print OK three times

• ngcp-collective-check - should not report any problems.

A cluster fail-over could be a good idea to see if everything works on the second node too. On the standby node issue:

19

The sip:provider PRO Handbook mr3.8.8 20 / 236

/usr/share/heartbeat/hb_takeover

Afterwards again check monit, cl_status and ngcp-collective-check.

Create two test subscribers, or retrieve the credentials for two of them. Register a client to the platform and perform a test call

between the two to ensure call routing works.

Run "apt-get update", ensure you have no warnings/errors here.

Warning

Installation may use locally specified mirrors. Discuss with a customer possibility to switch on Sipwise APT repositories

(at least for the time of upgrades), the public Debian mirrors may not provide packages for old Releases anymore or be

at least outdated!

To switch on Sipwise APT repositories, execute the following commands as root :

echo "# Please visit /etc/apt/sources.list.d/ instead." > /etc/apt/sources.list

mkdir -p /etc/apt/sources.list.d

for file in /etc/apt/sources.list.d/*.list ; do mv "${file}" "${file}.DISABLED" ; done

NGCP_CURRENT_VERSION=$(cat /etc/ngcp_version)

cat > /etc/apt/sources.list.d/debian.list << EOF

custom sources.list, deployed via upgrade ${NGCP_CURRENT_VERSION}->mr3.8.8

#

Debian repositories

deb http://debian.sipwise.com/debian/ wheezy main contrib non-free

#deb-src http://debian.sipwise.com/debian/ wheezy main contrib non-free

#

deb http://debian.sipwise.com/debian-security/ wheezy-security main contrib non-free

#deb-src http://debian.sipwise.com/debian-security/ wheezy-security main contrib non-free

#

deb http://debian.sipwise.com/debian/ wheezy-updates main contrib non-free

#deb-src http://debian.sipwise.com/debian/ wheezy-updates main contrib non-free

EOF

NGCP_CURRENT_VERSION=$(cat /etc/ngcp_version)

cat > /etc/apt/sources.list.d/sipwise.list << EOF

NGCP_MANAGED_FILE - do not remove this line if it should be automatically handled

deployed via upgrade ${NGCP_CURRENT_VERSION}->mr3.8.8

#

Sipwise repository

deb http://deb.sipwise.com/sppro/${NGCP_CURRENT_VERSION}/ wheezy main

#deb-src http://deb.sipwise.com/sppro/${NGCP_CURRENT_VERSION}/ wheezy main

EOF

Run "apt-get update" once again and ensure you have no warnings/errors here.

20

The sip:provider PRO Handbook mr3.8.8 21 / 236

3.2 Upgrade from previous release

Note

Make sure you have finished with general Section 3.1 before continue.

The sip:provider PRO system upgrade to mr3.8.8 will perform a couple of fundamental tasks:

• Update DB schema

• Upgrade yml config schema

So assuming you have a running sip:provider PRO system and want to upgrade it, start on the inactive node by upgrading software,

then take over from the other node and then upgrade the other (now inactive) node, as detailed in the steps below.

1. Switch to new repositories

For upgrading the sip:provider PRO to the latest mr3.8.8 release, execute the following commands on both nodes:

NGCP_CURRENT_VERSION=$(cat /etc/ngcp_version)

sed -i "s/$NGCP_CURRENT_VERSION/mr3.8.8/" /etc/apt/sources.list.d/sipwise.list

apt-get update

apt-get install ngcp-upgrade-mr3.8.8-pro

2. Execute ngcp-upgrade in inactive node.

ngcp-upgrade

Note

If there is an error during DB schema update, the ngcp-upgrade script will request you to solve it. Once you’ve fixed the

problem just re-execute ngcp-upgrade again. When all finishes successfully check that replication is running.

3. Merge/add the custom configuration templates if needed. Apply the changes to configuration templates if any and send

them to the shared storage and the other node:

ngcpcfg apply

ngcpcfg push --nobuild --noapply

4. Promote inactive node to active.

/usr/share/heartbeat/hb_takeover

5. Go to the new inactive node. Run ngcp-upgrade.

ngcp-upgrade

21

The sip:provider PRO Handbook mr3.8.8 22 / 236

When all finishes successfully check that replication is running. Check monit summary, ngcpcfg status and

ngcp-collective-check. Finally, do a basic functionality test. Check web interface, register two test subscribers

and perform a test call between the two to ensure call routing works.

Note

You can find a backup of some important configuration files of your existing installation under /var/backup/ngcp-mr3.8.8-

(where * is a place holder for a timestamp) in case you need to roll back something at any time. A log file of the upgrade

procedure is available at /var/backup/ngcp-mr3.8.8-/upgrade.log.

22

The sip:provider PRO Handbook mr3.8.8 23 / 236

3.3 Upgrade from 2.8 LTS

Note

Make sure you have finished with general Section 3.1 before continue.

The system upgrade from sip:provider PRO 2.8 LTS to mr3.8.8 will perform a couple of fundamental tasks:

• Verify APT source lists

• Upgrade Debian from 6.0 to 7.0

• Update DB schema

• Upgrade yml config schema

Run "apt-get update", ensure you have no warnings/errors here.

Warning

Installation may use locally specified mirrors. Discuss with a customer switching on Sipwise APT repositories. All public

Debian mirrors do not provide squeeze packages anymore!

To switch on Sipwise APT repositories, execute the following commands as root :

echo "# Please visit /etc/apt/sources.list.d/ instead." > /etc/apt/sources.list

mkdir -p /etc/apt/sources.list.d

for file in /etc/apt/sources.list.d/*.list ; do mv "${file}" "${file}.DISABLED" ; done

NGCP_CURRENT_VERSION=$(cat /etc/ngcp_version)

cat > /etc/apt/sources.list.d/debian.list << EOF

custom sources.list, deployed via upgrade ${NGCP_CURRENT_VERSION}->mr3.8.8

#

Debian repositories

deb http://debian.sipwise.com/debian/ squeeze main contrib non-free

#deb-src http://debian.sipwise.com/debian/ squeeze main contrib non-free

#

deb http://debian.sipwise.com/debian-security/ squeeze-security main contrib non-free

#deb-src http://debian.sipwise.com/debian-security/ squeeze-security main contrib non-free

#

deb http://debian.sipwise.com/debian/ squeeze-updates main contrib non-free

#deb-src http://debian.sipwise.com/debian/ squeeze-updates main contrib non-free

EOF

NGCP_CURRENT_VERSION=$(cat /etc/ngcp_version)

cat > /etc/apt/sources.list.d/sipwise.list << EOF

23

The sip:provider PRO Handbook mr3.8.8 24 / 236

NGCP_MANAGED_FILE - do not remove this line if it should be automatically handled

deployed via upgrade ${NGCP_CURRENT_VERSION}->mr3.8.8

#

Sipwise repository

deb http://deb.sipwise.com/sppro/${NGCP_CURRENT_VERSION}/ squeeze main

#deb-src http://deb.sipwise.com/sppro/${NGCP_CURRENT_VERSION}/ squeeze main

#

Sipwise squeeze backports

deb http://deb.sipwise.com/squeeze-backports/ squeeze-backports main

#deb-src http://deb.sipwise.com/squeeze-backports/ squeeze-backports main

#

Debian’s squeeze-lts, using Sipwise’ mirror

deb http://debian.sipwise.com/debian/ squeeze-lts main

#deb-src http://debian.sipwise.com/debian/ squeeze-lts main

#

Percona’s high performance mysql builds

deb http://deb.sipwise.com/percona/ squeeze main

#deb-src http://deb.sipwise.com/percona/ squeeze main

EOF

Run "apt-get update" once again and ensure you have no warnings/errors here.

Warning

be sure you are using the latest 2.8 LTS version before upgrading to mr3.8.8 LTS version. mr3.8.8 LTS version uses

new repository GPG key which should be installed in 2.8 LTS version before further upgrade to mr3.8.8 LTS version.

For upgrading the 2.8 LTS version to the latest 2.8 packages version, execute the following commands as root (on both

nodes, using switchover and executing commands on inactive pair):

ngcpcfg pull && apt-get update && apt-get upgrade && \

ngcp-update-db-schema && ngcp-update-cfg-schema && \

ngcpcfg apply && ngcpcfg push --nobuild --noapply

Note

re-check you have all the latest packages installed (ensure you have 0 everywhere below):

> apt-get upgrade

Reading package lists... Done

Building dependency tree

Reading state information... Done

0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded.

So assuming you have a running the latest sip:provider PRO 2.8 LTS system and want to upgrade it, start on the inactive node by

upgrading software, then take over from the other node and then upgrade the other (now inactive) node, as detailed in the steps

below.

24

The sip:provider PRO Handbook mr3.8.8 25 / 236

1. Switch to new repositories

For upgrading the sip:provider PRO from 2.8 LTS to the latest mr3.8.8 release, execute the following commands on both

nodes:

NGCP_CURRENT_VERSION=$(cat /etc/ngcp_version)

sed -i "s/$NGCP_CURRENT_VERSION/mr3.8.8/" /etc/apt/sources.list.d/sipwise.list

sed -i ’/squeeze-lts/d’ /etc/apt/sources.list.d/sipwise.list

sed -i ’s/squeeze/wheezy/g’ /etc/apt/sources.list.d/sipwise.list

apt-get update

apt-get install ngcp-upgrade-mr3.8.8-pro

2. Execute ngcp-upgrade in inactive node.

ngcp-upgrade

Note

If there is an error during DB schema update, the ngcp-upgrade script will request you to solve it. Once you’ve fixed the

problem just re-execute ngcp-upgrade again. When all finishes successfully check that replication is running.

3. Merge/add the custom configuration templates if needed. Apply the changes to configuration templates if any and send

them to the shared storage and the other node:

ngcpcfg apply

ngcpcfg push --nobuild --noapply

4. Promote inactive node to active.

/usr/lib64/heartbeat/hb_takeover

5. Go to the new inactive node. Run ngcp-upgrade.

ngcp-upgrade

When all finishes successfully check that replication is running. Check monit summary, ngcpcfg status and

ngcp-collective-check. Finally, do a basic functionality test. Check web interface, register two test subscribers

and perform a test call between the two to ensure call routing works.

Note

You can find a backup of some important configuration files of your existing 2.8 LTS installation under /var/backup/ngcp-

mr3.8.8- (where * is a place holder for a timestamp) in case you need to roll back something at any time. A log file of the

upgrade procedure is available at /var/backup/ngcp-mr3.8.8-/upgrade.log.

Note

mr3.8.8 LTS release has several major changes comparing to previous 2.8 LTS release:

25

The sip:provider PRO Handbook mr3.8.8 26 / 236

1. Upgrade Debian from 6.0 to 7.0

2. sip:provider PRO mr3.8.8 requires at least 2GB of RAM available as the minimum requirements for new WEB interface,

otherwise certain features won’t work and you will run into arbitrary issues.

3. Migrated from SOAP to REST API. SOAP API is disabled by default after upgrade and will be completely removed in mr4.0+

4. Migrated from Apache to Nginx. Apache and related packages will NOT be deleted during upgrade. However it is highly

recommended to migrate customer specific VirtualHosts (if any) from Apache to Nginx and remove Apache and related

packages from sip:provider PRO system after upgrade manually. You can use the following command as root (on both

nodes):

apt-get purge apache2 apache2.2-common apache2-utils apache2.2-bin && apt-get autoremove

26

The sip:provider PRO Handbook mr3.8.8 27 / 236

4 Installation

The following chapter will provide the step by step instructions on how to put the sip:provider PRO into operations.

4.1 Hardware Specifications

4.1.1 Dimensions and Weight

The sip:provider PRO ships fully pre-installed on two servers. The hardware dimensions and weight is defined in the following

figure:

Xa Xb (Width) Y (Height) Za w/ bezel Za w/o bezel Zb (Depth) Zc

482.4mm 434mm 42.4mm 35mm 21mm 612.6mm 641.9mm

Weight: 15kg

27

The sip:provider PRO Handbook mr3.8.8 28 / 236

4.1.2 Front View

28

The sip:provider PRO Handbook mr3.8.8 29 / 236

4.1.3 Back View

The redundant PSUs include LEDs which indicate the status of the PSU:

• Not lit: AC power is not connected.

• Green: In standby mode, a green light indicates that a valid AC source is connected to the power supply and that the power

supply is operational. When the system is on, a green light also indicates that the power supply is providing DC power to the

system.

• Amber: Indicates a problem with the power supply.

• Alternating green and amber: When hot-adding a power supply, this indicates that the power supply is mismatched with the

other power supply (a high output power supply and an Energy Smart power supply are installed in the same system). The

power supply that has the flashing indicator needs to be replaced with the same model as the other power supply.

29

The sip:provider PRO Handbook mr3.8.8 30 / 236

4.2 Installation Prerequisites

In order to put the sip:provider PRO into operations, you need to rack-mount it into 19" racks.

What you will find in the box is the following equipment:

• 2 servers

• 2 pairs of rails to rack-mount the servers

• 4 power cables with C13 jacks

What you will additionally need and what is not part of the shipment is the following parts:

• 2 CAT5 cables to connect the servers to the access switches for external communication

• 1 CAT5 cable to directly connect the two servers for internal communication

4.3 Rack-Mount Installation

Install the two servers into the rack (either into a single one or into two geographically distributed ones). The rails shipped with the

servers should fit into standard 4-Post 19" racks. If it does not fit, please consult your rack vendor to get proper rails.

The following figure shows the mounted rails. Please note that the cable management arm on the top right is NOT included.

30

The sip:provider PRO Handbook mr3.8.8 31 / 236

4.4 Power Supply Cabling

Each server has two redundant Power Supply Units (PSU). Connect one PSU to your normal power circuit and the other one to

an Uninterruptible Power Supply Unit (UPS) to gain the maximum protection against power failures.

The cabling should look like in the following picture to prevent accidental power cuts:

4.5 Network Cabling

For each of the two servers, connect a straight CAT5 cable to the first network interface and hook it up to the corresponding access

switch port.

Then patch a cross-link with another straight CAT5 cable between the two servers by connecting the cable to the second network

interface. The direct cross cable is used for maximum availability, because this connection is used by the servers to communicate

with each other internally. Only use a switch in between if there is no other way to connect the two ports (e.g. if it’s geographically

distributed).

In case you are using a switch for cross-link make sure to enable portfast mode on Cisco switches. The thing is that STP puts

the port into learning mode for 90 seconds after it comes up for the first time. During this learning phase, the link is technically up,

but no traffic passes through, so heartbeat will detect other node as dead during boot. Portfast tells the switch to skip the learning

phase and go to forwarding state right away: spanning-tree portfast [trunk].

31

The sip:provider PRO Handbook mr3.8.8 32 / 236

5 Administrative Configuration

To be able to configure your first test clients, you will need a Customer, a SIP domain and some subscribers in this domain.

Throughout this steps, let’s assume you’re running the NGCP on the IP address 1.2.3.4, and you want this IP to be used as SIP

domain. This means that your subscribers will have an URI like user1@1.2.3.4.

Tip

You can of course set up a DNS name for your IP address (e.g. letting sip.yourdomain.com point to 1.2.3.4) and use this DNS

name throughout the next steps, but we’ll keep it simple and stick directly with the IP as a SIP domain for now.

Warning

Once you started adding subscribers to a SIP domain, and later decide to change the domain, e.g. from 1.2.3.4 to

sip.yourdomain.com, you’ll need to recreate all your subscribers in this new domain. It’s currently not possible to easily

change the domain part of a subscriber.

Go to the Administrative Web Panel (Admin Panel) running on https://<ce-ip>:1443/login/admin and follow the steps below. The

default user on the system is administrator with the password administrator, if you haven’t changed it already.

5.1 Creating a Customer

A Customer is a special type of contract on the system acting as billing container for SIP subscribers. You can create as many

SIP subscribers within a Customer as you want.

To create a Customer, got to Settings→Customers.

32

The sip:provider PRO Handbook mr3.8.8 33 / 236

Click on Create Customer.

33

The sip:provider PRO Handbook mr3.8.8 34 / 236

Each Customer needs a Contact. We can either reuse the default one, but for a clean setup, we create a new Contact for each

Customer to be able to identify the Customer. Click on Create Contact to create a new Contact.

34

The sip:provider PRO Handbook mr3.8.8 35 / 236

We assign the Contact to the default Reseller. You can create a new one if you want, but for a simple setup the default Reseller is

sufficient. Select the Reseller and enter the contact details (at least an Email is required), then press Save.

35

The sip:provider PRO Handbook mr3.8.8 36 / 236

You will be redirected back to the Contract form. The newly created Contact is selected by default now, so you only have to select

a Billing Profile. Again you can create a new one on the fly, but we will go with the default profile for now. Select it and press Save.

You will now see your first Customer in the list. Hover over the customer and click Details to view the details.

36

The sip:provider PRO Handbook mr3.8.8 37 / 236

5.2 Creating a Subscriber

In your Customer details view, click on the Subscribers row, then click the Create Subscriber.

37

The sip:provider PRO Handbook mr3.8.8 38 / 236

As you can see, we don’t have any SIP Domains yet, so click on Create Domain to create one.

38

The sip:provider PRO Handbook mr3.8.8 39 / 236

Select the Reseller (make sure to use the same reseller where your Customer is created in) and enter your domain name, then

press Save.

39

The sip:provider PRO Handbook mr3.8.8 40 / 236

Your Domain will be preselected now, so fill out the rest of the form:

• Web Username: This is the user part of the username the subscriber may use to log into her Customer Self Care Interface. The

user part will be automatically suffixed by the SIP domain you choose for the SIP URI. Usually the web username is identical to

the SIP URI, but you may choose a different naming schema.

Caution

The web username needs to be unique. The system will return a fault if you try to use the same web username twice.

• Web Password: This is the password for the subscriber to log into her Customer Self Care Interface. It must be at least 6

characters long.

• E164 Number: This is the telephone number mapped to the subscriber, separated into Country Code (CC), Area Code (AC)

and Subscriber Number (SN). For the first tests, you can set a made-up number here and change it later when you get number

blocks assigned by your PSTN interconnect partner. So in our example, we’ll use 43 as CC, 99 as AC and 1001 as SN to form

the phantasy number +43 99 1001.

Tip

This number can actually be used to place calls between local subscribers, even if you don’t have any PSTN interconnection.

This comes in handy if you use phones instead of soft-clients for your tests. The format in which this number can be dialled so

the subscriber is reached is defined in Section 5.6.

40

The sip:provider PRO Handbook mr3.8.8 41 / 236

Important

NGCP allows single subscriber to have multiple E.164 numbers to be used as aliases for receiving incoming calls. Also

NGCP supports "implicit" extensions, e.g. if a subscriber has number 012345, but somebody calls 012345100, then it

first tries to send the call to number 012345100 (even though the user is registered as myusername), and only after

404 it falls back to the user-part for which the user is registered.

• SIP Username: The user part of the SIP URI for your subscriber.

• SIP Domain: The domain part of the SIP URI for your subscriber.

• SIP Password: The password of your subscriber to authenticate on the SIP proxy. It must be at least 6 characters long.

• Status: You can lock a subscriber here, but for creating one, you will most certainly want to use active.

• External ID: You can provision an arbitrary string here (e.g. an ID of a 3rd party provisioning/billing system).

• Administrative: If you have multiple subscribers in one account and set this option for one of them, this subscriber can admin-

istrate other subscribers via the Customer Self Care Interface.

Repeat the creation of Customers and Subscribers for all your test accounts. You should have at least 3 subscribers to test all the

functionality of the NGCP.

41

The sip:provider PRO Handbook mr3.8.8 42 / 236

Tip

At this point, you’re able to register your subscribers to the NGCP and place calls between these subscribers.

You should now revise the Domain and Subscriber Preferences.

5.3 Domain Preferences

The Domain Preferences are the default settings for Subscriber Preferences, so you should set proper values there if you don’t

want to configure each subscriber separately. You can later override these settings in the Subscriber Preferences if particular

subscribers need special settings.

To configure your Domain Preferences, go to Settings→Domains and click on the Preferences button of the domain you want to

configure.

The most important settings are in the group Number Manipulations, where you can configure where from a SIP message to take

numbers from for incoming messages, where in the SIP messages to put which numbers for outgoing SIP messages, and how

these numbers are normalized to E164 format and vice versa.

To assign a Rewrite Rule Set to a Domain, create a set first as described in Section 5.6, then assign it to the domain by editing

the rewrite_rule_set preference.

42

The sip:provider PRO Handbook mr3.8.8 43 / 236

Select the Rewrite Rule Set and press Save.

43

The sip:provider PRO Handbook mr3.8.8 44 / 236

Then, select the field you want the User Provided Number to be taken from for inbound INVITE messages. Usually the From-

Username should be fine, but you can also take it from the Display-Name of the From-Header, and other options are available as

well.

5.4 Subscriber Preferences

You can override the Domain Preferences on a subscriber basis as well. Also, there are Subscriber Preferences which don’t have

a default value in the Domain Preferences.

To configure your Subscriber, go to Settings→Subscribers and click Details on the row of your subscriber. There, click on the

Preferences button on top.

You want to look into the Number Manipulations and Access Restrictions options in particular, which control what is used as

user-provided and network-provided calling numbers.

• For outgoing calls, you may define multiple numbers or patterns to control what a subscriber is allowed to send as user-provided

calling numbers using the allowed_clis preference.

• If allowed_clis does not match the number sent by the subscriber, then the number configured in cli (the network-provided

number) preference will be used as user-provided calling number also.

• You can override any user-provided number coming from the subscriber using the user_cli preference.

44

The sip:provider PRO Handbook mr3.8.8 45 / 236

5.5 Creating Peerings

If you want to terminate calls at or allow calls from 3rd party systems (e.g. PSTN gateways, SIP trunks), you need to create SIP

peerings for that. To do so, go to Settings→Peerings. There you can add peering groups, and for each peering group add peering

servers and rules controlling which calls are routed over these groups. Every peering group needs a peering contract for correct

interconnection billing.

5.5.1 Creating Peering Groups

Click on Create Peering Group to create a new group.

In order to create a group, you must select a peering contract. You will most likely want to create one contract per peering group.

Click on Create Contract create a Contact, then select a Billing Profile.

45

The sip:provider PRO Handbook mr3.8.8 46 / 236

Click Save on the Contacts form, and you will get redirected back to the form for creating the actual Peering Group. Put a name,

priority and description there, for example:

• Peering Contract: select the id of the contract created before

• Name: test group

• Priority: 1

• Description: peering to a test carrier

46

The sip:provider PRO Handbook mr3.8.8 47 / 236

The Priority option defines which Peering Group to favor if two peering groups have peering rules matching an outbound call.

Peering Rules are described below.

Then click Save to create the group.

5.5.2 Creating Peering Servers

In the group created before, you need to add peering servers to route calls to and receive calls from. To do so, click on Details on

the row of your new group in your peering group list.

To add your first Peering Server, click on the Create Peering Server button.

47

The sip:provider PRO Handbook mr3.8.8 48 / 236

In this example, we will create a peering server with IP 2.3.4.5 and port 5060:

• Name: test-gw-1

• IP Address: 2.3.4.5

• Hostname: leave empty

• Port: 5060

• Protocol: UDP

• Weight: 1

• Via Route: None

48

The sip:provider PRO Handbook mr3.8.8 49 / 236

Click Save to create the peering server.

Tip

The hostname field for a peering server is optional. Usually, the IP address of the peer is used as domain part in the Request

URI. Some peers may require you to set a particular hostname instead of the IP address there, which can be done by filling in

this field. The IP address must always be given though, and the request will always be sent to the IP address, no matter what

you put into the hostname field.

Tip

If you want to add a peering server with an IPv6 address, enter the address without surrounding square brackets into the IP

Address column, e.g. ::1.

You can force an additional hop (e.g. via an external SBC) towards the peering server by using the Via Route option. The available

options you can select there are defined in /etc/ngcp-config/config.yml, where you can add an array of SIP URIs in

kamailio→lb→external_sbc like this:

kamailio:

lb:

external_sbc:

49

The sip:provider PRO Handbook mr3.8.8 50 / 236

- sip:192.168.0.1:5060

- sip:192.168.0.2:5060

Execute ngcpcfg apply, then edit your peering server and select the hop from the Via Route selection.

Once a peering server has been created, this server can already send calls to the system.

Important

To be able to send outbound calls towards the servers in the Peering Group, you also need to define Peering Rules.

They specify which source and destination numbers are going to be terminated over this group. To create a rule, click

the Create Peering Rule button.

Since the previously created peering group will be the only one in our example, we have to add a default rule to route all calls via

this group. To do so, create a new peering rule with the following values:

• Callee Prefix: leave empty

• Callee Pattern: leave empty

• Caller Pattern: leave empty

50

The sip:provider PRO Handbook mr3.8.8 51 / 236

• Description: Default Rule

Then click Save to add the rule to your group.

Tip

If you set the caller or callee rules to refine what is routed via this peer, enter all phone numbers in full E.164 format, that is

<cc><ac><sn>. TIP: The Caller Pattern field covers the whole URI including the subscriber domain, so you can only allow

certain domains over this peer by putting for example @example\.com into this field.

51

The sip:provider PRO Handbook mr3.8.8 52 / 236

Important

The selection of peering servers for outbound calls is done in the following order: 1. whether caller or callee pattern

matched. 2. length of the callee prefix. 3. priority of the peering group. 4. weight of the peering servers in the selected

peering group. After one or more peering group(s) is matched for an outbound call, all servers in this group are tried,

according to their weight (the bigger the weight of a server, the higher the probability that NGCP will send the call to

it). If a peering server replies with SIP codes 408, 500 or 503, or if a peering server doesn’t respond at all, the next

peering server in the current peering group is used as a fallback, one after the other until the call succeeds. If no more

servers are left in the current peering group, the next group which matches the peering rules is going to be used.

5.5.3 Authenticating and Registering against Peering Servers

Proxy-Authentication for outbound calls

If a peering server requires the SPCE to authenticate for outbound calls (by sending a 407 as response to an INVITE), then you

have to configure the authentication details in the Preferences view of your peer host.

52

The sip:provider PRO Handbook mr3.8.8 53 / 236

To configure this setting, open the Remote Authentication tab and edit the following three preferences:

• peer_auth_user: <username for peer auth>

• peer_auth_pass: <password for peer auth>

• peer_auth_realm: <domain for peer auth>

53

The sip:provider PRO Handbook mr3.8.8 54 / 236

Important

If you do NOT authenticate against a peer host, then the caller CLI is put into the From and P-Asserted-Iden

tity headers, e.g. "+4312345" <sip:+4312345@your-domain.com>. If you DO authenticate, then the

From header is "+4312345" <sip:your_peer_auth_user@your_peer_auth_realm> (the CLI is in

the Display field, the peer_auth_user in the From username and the peer_auth_realm in the From domain), and the

P-Asserted-Identity header is as usual like <sip:+4312345@your-domain.com>. So for presenting

the correct CLI in CLIP no screening scenarios, your peering provider needs to extract the correct user either from the

From Display-Name or from the P-Asserted-Identity URI-User.

Tip

You will notice that these three preferences are also shown in the Subscriber Preferences for each subscriber. There you can

override the authentication details for all peer host if needed, e.g. if every user authenticates with his own separate credentials

at your peering provider.

Tip

If peer_auth_realm is set, the system may overwrite the Request-URI with the peer_auth_realm value of the peer when

sending the call to that peer or peer_auth_realm value of the subscriber when sending a call to the subscriber. Since this is

rarely a desired behavior, it is disabled by default starting with NGCP release 3.2. If you need the replacement, you should set

set_ruri_to_peer_auth_realm: ’yes’ in /etc/ngcp-config/config.yml.

54

The sip:provider PRO Handbook mr3.8.8 55 / 236

Registering at a Peering Server

Unfortunately, the credentials configured above are not yet automatically used to register the SPCE at your peer hosts. There is

however an easy manual way to do so, until this is addressed.

Configure your peering servers with the corresponding credentials in /etc/ngcp-config/templates/etc/ngcp-sems/etc/reg_agent.conf.tt2,

then execute ngcpcfg apply.

Important

Be aware that this will force SEMS to restart, which will drop running conference calls.

5.6 Configuring Rewrite Rule Sets

Important

On the NGCP, every phone number is treated in E.164 format <country code><area code><subscriber number>.

Rewrite Rule Sets is a flexible tool to translate the caller and callee numbers to the proper format before the rout-

ing lookup and after the routing lookup separately. The created Rewrite Rule Sets can be assigned to the domains,

subscribers and peers as a preference.

You would normally begin with creating a Rewrite Rule Set for your SIP domains. This is used to control what an end user can dial

for outbound calls, and what is displayed as the calling party on inbound calls. The subscribers within a domain inherit Rewrite

Rule Sets of that domain, unless this is overridden by a subscriber Rewrite Rule Set preference.

To create a new Rewrite Rule Set, go to Settings→Rewrite Rule Sets. There you can create a Set identified by a name. This

name is later shown in your peer-, domain- and user-preferences where you can select the rule set you want to use.

55

The sip:provider PRO Handbook mr3.8.8 56 / 236

Click Create Rewrite Rule Set and fill in the form accordingly.

56

The sip:provider PRO Handbook mr3.8.8 57 / 236

Press the Save button to create the set.

To view the Rewrite Rules within a set, hover over the row and click the Rules button.

57

The sip:provider PRO Handbook mr3.8.8 58 / 236

The rules are ordered by Caller and Callee as well as direction Inbound and Outbound.

Tip

In Europe, the following formats are widely accepted: +<cc><ac><sn>, 00<cc><ac><sn> and 0<ac><sn>. Also, some countries

allow the areacode-internal calls where only subscriber number is dialed to reach another number in the same area. Within this

section, we will use these formats to show how to use rewrite rules to normalize and denormalize number formats.

5.6.1 Inbound Rewrite Rules for Caller

These rules are used to normalize user-provided numbers (e.g. passed in From Display Name or P-Preferred-Identity headers)

into E.164 format. In our example, we’ll normalize the three different formats mentioned above into E.164 format.

To create the following rules, click on the Create Rewrite Rule for each of them and fill them with the values provided below.

STRIP LEADING 00 OR +

• Match Pattern: ˆ(00|\+)([1-9][0-9]+)$

• Replacement Pattern: \2

• Description: International to E.164

• Direction: Inbound

58

The sip:provider PRO Handbook mr3.8.8 59 / 236

• Field: Caller

REPLACE 0 BY CALLER’S COUNTRY CODE:

• Match Pattern: ˆ0([1-9][0-9]+)$

• Replacement Pattern: ${caller_cc}\1

• Description: National to E.164

• Direction: Inbound

• Field: Caller

NORMALIZE LOCAL CALLS:

• Match Pattern: ˆ([1-9][0-9]+)$

• Replacement Pattern: ${caller_cc}${caller_ac}\1

• Description: Local to E.164

• Direction: Inbound

• Field: Caller

Normalization for national and local calls is possible with special variables ${caller_cc} and ${caller_ac} that can be

used in Replacement Pattern and are substituted by the country and area code accordingly during the call routing.

59

The sip:provider PRO Handbook mr3.8.8 60 / 236

Important

These variables are only being filled in when a call originates from a subscriber (because only then the cc/ac information

is known by the system), so you can not use them when a calls comes from a SIP peer (the variables will be just empty

in this case).

Tip

When routing a call, the rewrite processing is stopped after the first match of a rule, starting from top to bottom. If you have

two rules (e.g. a generic one and a more specific one), where both of them would match some numbers, reorder them with the

up/down arrows into the appropriate position.

5.6.2 Inbound Rewrite Rules for Callee

These rules are used to rewrite the number the end user dials to place a call to a standard format for routing lookup. In our

example, we again allow the three different formats mentioned above and again normalize them to E.164, so we put in the same

rules as for the caller.

STRIP LEADING 00 OR +

• Match Pattern: ˆ(00|\+)([1-9][0-9]+)$

• Replacement Pattern: \2

60

The sip:provider PRO Handbook mr3.8.8 61 / 236

• Description: International to E.164

• Direction: Inbound

• Field: Callee

REPLACE 0 BY CALLER’S COUNTRY CODE:

• Match Pattern: ˆ0([1-9][0-9]+)$

• Replacement Pattern: ${caller_cc}\1

• Description: National to E.164

• Direction: Inbound

• Field: Callee

NORMALIZE AREACODE-INTERNAL CALLS:

• Match Pattern: ˆ([1-9][0-9]+)$

• Replacement Pattern: ${caller_cc}${caller_ac}\1

• Description: Local to E.164

• Direction: Inbound

• Field: Callee

Tip

Our provided rules will only match if the caller dials a numeric number. If he dials an alphanumeric SIP URI, none of our rules

will match and no rewriting will be done. You can however define rules for that as well. For example, you could allow your end

users to dial support and rewrite that to your support hotline using the match pattern ˆsupport$ and the replace pattern

43800999000 or whatever your support hotline number is.

5.6.3 Outbound Rewrite Rules for Caller

These rules are used to rewrite the calling party number for a call to an end user. For example, if you want the device of your

end user to show 0<ac><sn> if a national number calls this user, and 00<cc><ac><sn> if an international number calls, put the

following rules there.

REPLACE AUSTRIAN COUNTRY CODE 43 BY 0

• Match Pattern: ˆ43([1-9][0-9]+)$

• Replacement Pattern: 0\1

• Description: E.164 to Austria National

61

The sip:provider PRO Handbook mr3.8.8 62 / 236

• Direction: Outbound

• Field: Caller

PREFIX 00 FOR INTERNATIONAL CALLER

• Match Pattern: ˆ([1-9][0-9]+)$

• Replacement Pattern: 00\1

• Description: E.164 to International

• Direction: Outbound

• Field: Caller

Tip

Note that both of the rules would match a number starting with 43, so reorder the national rule to be above the international

one (if it’s not already the case).

5.6.4 Outbound Rewrite Rules for Callee

These rules are used to rewrite the called party number immediately before sending out the call on the network. This gives you an

extra flexibility by controlling the way request appears on a wire, when your SBC or other device expects the called party number

to have a particular tech-prefix. It can be used on calls to end users too if you want to do some processing in intermediate SIP

device, e.g. apply legal intercept selectively to some subscribers.

PREFIX SIPSP# FOR ALL CALLS

• Match Pattern: ˆ([0-9]+)$

• Replacement Pattern: sipsp#\1

• Description: Intercept this call

• Direction: Outbound

• Field: Callee

5.6.5 Emergency Number Handling

Configuring Emergency Numbers is also done via Rewrite Rules.

For Emergency Calls from a subscriber to the platform, you need to define an Inbound Rewrite Rule For Callee, which adds a

prefix emergency_ to the number (and can rewrite the number completely as well at the same time). If the proxy detects a call

to a SIP URI starting with emergency_, it will enter a special routing logic bypassing various checks which might make a normal

call fail (e.g. due to locked or blocked numbers, insufficient credits or exceeding the max. amount of parallel calls).

TAG AN EMERGENCY CALL

62

The sip:provider PRO Handbook mr3.8.8 63 / 236

• Match Pattern: ˆ(911|112)$

• Replacement Pattern: emergency_\1

• Description: Tag Emergency Numbers

• Direction: Inbound

• Field: Callee

To route an Emergency Call to a Peer, you can select a specific peering group by adding a peering rule with a callee prefix set to

emergency_ to a peering group.

In order to normalize the emergency number to a valid format accepted by the peer, you need to assign an Outbound Rewrite Rule

For Callee, which strips off the emergency_ prefix. You can also use the variables ${caller_emergency_cli}, ${cal

ler_emergency_prefix} and ${caller_emergency_suffix} as well as ${caller_ac} and ${caller_cc},

which are all configurable per subscriber to rewrite the number into a valid format.

NORMALIZE EMERGENCY CALL FOR PEER

• Match Pattern: ˆemergency_(.+)$

• Replacement Pattern: ${caller_emergency_prefix}${caller_ac}\1

• Description: Normalize Emergency Numbers

• Direction: Outbound

• Field: Caller

5.6.6 Assigning Rewrite Rule Sets to Domains and Subscribers

Once you have finished to define your Rewrite Rule Sets, you need to assign them. For sets to be used for subscribers, you can

assign them to their corresponding domain, which then acts as default set for all subscribers. To do so, go to Settings→Domains

and click Preferences on the domain you want the set to assign to. Click on Edit and select the Rewrite Rule Set created before.

63

The sip:provider PRO Handbook mr3.8.8 64 / 236

You can do the same in the Preferences of your subscribers to override the rule on a subscriber basis. That way, you can finely

control down to an individual user the dial-plan to be used. Go to Settings→Subscribers, click the Details button on the subscriber

you want to edit, the click the Preferences button.

5.6.7 Creating Dialplans for Peering Servers

For each peering server, you can use one of the Rewrite Rule Sets that was created previously as explained in Section 5.6 (keep

in mind that special variables ${caller_ac} and ${caller_cc} can not be used when the call comes from a peer). To do

so, click on the name of the peering server, look for the preference called Rewrite Rule Sets.

If your peering servers don’t send numbers in E.164 format <cc><ac><sn>, you need to create Inbound Rewrite Rules for each

peering server to normalize the numbers for caller and callee to this format, e.g. by stripping leading + or put them from national

into E.164 format.

Likewise, if your peering servers don’t accept this format, you need to create Outbound Rewrite Rules for each of them, for

example to append a + to the numbers.

64

The sip:provider PRO Handbook mr3.8.8 65 / 236

6 Advanced Subscriber Configuration

The sip:provider PRO provides a large amount of subscriber features in order to offer compelling VoIP services to end customers,

and also to cover as many deployment scenarios as possible. In this chapter, we will go over the features and describe their

behavior and their use cases.

6.1 Access Control for SIP Calls

There are two different methods to provide fine-grained call admission control to both subscribers and admins. One is Block Lists,

where you can define which numbers or patterns can be called from a subscriber to outbound direction and which numbers or

patterns are allowed to call a subscriber in inbound direction. The other is NCOS Levels, where the admin predefines rules for

outbound calls, which are grouped in certain levels. The user can then just choose the level, or the admin can restrict a user to a

certain level. Also sip:provider PRO offers some options to restrict the IP addresses that subscriber is allowed to use the service

from. The following chapters will discuss these features in detail.

6.1.1 Block Lists

Block Lists provide a way to control which users/numbers are able to call or to be called, based on a subscriber level, and can be

found in the Call Blockings section of the subscriber preferences.

Block Lists are separated into Administrative Block Lists (adm_block_*) and Subscriber Block Lists (block_*). They both have

65

The sip:provider PRO Handbook mr3.8.8 66 / 236

the same behavior, but Administrative Block Lists take higher precedence. Administrative Block Lists are only accessible by the

system administrator and can thus be used to override any Subscriber Block Lists, e.g. to block certain destinations. The following

break-down of the various block features apply to both types of lists.

Block Modes

Block lists can either be whitelists or blacklists and are controlled by the User Preferences block_in_mode, block_outmode__ and

their administrative counterparts.

• The blacklist mode (option is not checked tells the system to allow anything except the entries in the list. This mode is used

if you want to just block certain numbers and allow all the rest.

• The whitelist mode indicates to reject anything except the entries in the list. This is used if you want to enforce a strict policy

and allow only selected destinations or sources.

You can change a list mode from one to the other at any time.

Block Lists

The list contents are controlled by the User Preferences block_in_list, block_out_list and their administrative counterparts. Click

on the Edit button in the Preferences view to define the list entries.

In block list entries, you can provide shell patterns like * and []. The behavior of the list is controlled by the block_xxx_mode

feature (so they are either allowed or rejected). In our example above we have block_out_mode set to blacklist, so all calls to US

numbers and to the Austrian number +431234567 are going to be rejected.

66

The sip:provider PRO Handbook mr3.8.8 67 / 236

Click the Close icon once you’re done editing your list.

Block Anonymous Numbers

For incoming call, the User Preference block_in_clir and adm_block_in_clir controls whether or not to reject incoming calls with

number supression (either "[Aa]nonymous" in the display- or user-part of the From-URI or a header Privacy: id is set). This flag is

independent from the Block Mode.

6.1.2 NCOS Levels

NCOS Levels provide predefined lists of allowed or denied destinations for outbound calls of local subscribers. Compared to Block

Lists, they are much easier to manage, because they are defined on a global scope, and the individual levels can then be assigned

to each subscriber. Again there is the distinction for user- and administrative-levels.

NCOS levels can either be whitelists or blacklists.

• The blacklist mode indicates to allow everything except the entries in this level. This mode is used if you want to just block

certain destinations and allow all the rest.

• The whitelist mode indicates to reject anything except the entries in this level. This is used if you want to enforce a strict

policy and allow only selected destinations.

67

The sip:provider PRO Handbook mr3.8.8 68 / 236

Creating NCOS Levels

To create an NCOS Level, go to Settings→NCOS Levels and press the Create NCOS Level button.

Select a reseller, enter a name, select the mode and add a description, then click the Save button.

68

The sip:provider PRO Handbook mr3.8.8 69 / 236

Creating Rules per NCOS Level

To define the rules within the newly created NCOS Level, click on the Patterns button of the level.

69

The sip:provider PRO Handbook mr3.8.8 70 / 236

In the Number Patterns view you can create multiple patterns to define your level, one after the other. Click on the Create Pattern

Entry Button on top and fill out the form.

70

The sip:provider PRO Handbook mr3.8.8 71 / 236

In this example, we block (since the mode of the level is blacklist) all numbers starting with 439. Click the Save button to save the

entry in the level.

The option include local area code in list for a blacklist means that calls within the area code of the subscribers are denied, and

for whitelist that they are allowed, respectively. For example if a subscriber has country-code 43 and area-code 1, then selecting

this checkbox would result in an implicit entry ˆ431.

Assigning NCOS Levels to Subscribers/Domains

Once you’ve defined your NCOS Levels, you can assign them to local subscribers. To do so, navigate to Settings→Subscribers,

search for the subscriber you want to edit, press the Details button and go to the Preferences View. There, press the Edit button

on either the ncos or admncos setting in the Call Blockings__ section.

71

The sip:provider PRO Handbook mr3.8.8 72 / 236

You can assign the NCOS level to all subscribers within a particular domain. To do so, navigate to Settings→Domains, select the

domain you want to edit and click Preferences. There, press the Edit button on either ncos or admin_ncos in the Call Blockings

section.

Note: if both domain and subscriber have same NCOS preference set (either ncos or adm_ncos, or both) the subscriber’s prefer-

ence is used. This is done so that you can override the domain-global setting on the subscriber level.

Assigning NCOS Level for Forwarded Calls to Subscribers/Domains

In some countries there are regulatory requirements that prohibit subscribers from forwarding their numbers to special numbers like

emergency, police etc. While the sip:provider PRO does not deny provisioning Call Forward to these numbers, the administrator

can prevent the incoming calls from being actually forwarded to numbers defined in the NCOS list: just select the appropriate

NCOS level in the domain’s or subscriber’s preference adm_cf_ncos. This NCOS will apply only to the Call Forward from the

subscribers and not to the normal outgoing calls from them.

6.1.3 IP Address Restriction

The sip:provider PRO provides subscriber preference allowed_ips to restrict the IP addresses that subscriber is allowed to use the

service from. If the REGISTER or INVITE request comes from an IP address that is not in the allowed list, the sip:provider PRO

will reject it with a 403 message. Also a voice message can be played when the call attempt is rejected (if configured).

By default, allowed_ips is an empty list which means that subscriber is not restricted. If you want to configure a restriction, navigate

72

The sip:provider PRO Handbook mr3.8.8 73 / 236

to Settings→Subscribers, search for the subscriber you want to edit, press Details and then Preferences and press Edit for the

allowed_ips preference in the Access Restrictions section.

Press the Edit button to the right of empty drop-down list.

You can enter multiple allowed IP addresses or IP address ranges one after another. Click the Add button to save each entry in

the list. Click the Delete button if you want to remove some entry.

6.2 Call Forwarding and Call Hunting

The sip:provider PRO provides the capabilities for normal call forwarding (deflecting a call for a local subscriber to another party

immediately or based on events like the called party being busy or doesn’t answer the phone for a certain number of seconds)

and serial call hunting (sequentially executing a group of deflection targets until one of them succeeds). Targets can be stacked,

which means if a target is also a local subscriber, it can have another call forward or hunt group which is executed accordingly.

Call Forwards and Call Hunting Groups can either be executed unconditionally or based on a Time Set Definition, so you can

define deflections based on time period definitions (e.g. Monday to Friday 8am to 4pm etc).

6.2.1 Setting a simple Call Forward

Go to your Subscriber Preferences and click Edit on the Call Forward Type you want to set (e.g. Call Forward Unconditional).

73

The sip:provider PRO Handbook mr3.8.8 74 / 236

If you select URI/Number in the Destination field, you also have to set a URI/Number. The timeout defines for how long this

destination should be tried to ring.

6.2.2 Advanced Call Hunting

If you want multiple destinations to be executed one after the other, you need to change into the Advanced View when editing your

call forward. There, you can select multiple Destination Set /Time Set pairs to be executed.

A Destination Set is a list of destinations to be executed one after another.

A Time Set is a time definition when to execute this Destination Set.

Configuring Destination Sets

Click on Manage Destination Sets to see a list of available sets. The quickset_cfu has been implicitly created during our creation

of a simple call forward. You can edit it to add more destinations, or you can create a new destination set.

74

The sip:provider PRO Handbook mr3.8.8 75 / 236

When you close the Destination Set Overview, you can now assign your new set in addition or instead of the quickset_cfu set.

75

The sip:provider PRO Handbook mr3.8.8 76 / 236

Press Save to store your settings.

Configuring Time Sets

Click on Manage Time Sets in the advanced call-forward menu to see a list of available time sets. By default there are none, so

you have to create one.

76

The sip:provider PRO Handbook mr3.8.8 77 / 236

You need to provide a Name, and a list of Periods where this set is active. If you only set the top setting of a date field (like the

Year setting in our example above), then it’s valid for just this setting (like the full year of 2013 in our case). If you provide the

bottom setting as well, it defines a period (like our Month setting, which means from beginning of April to end of September).

Important

the period is a through definition, so it covers the full range. If you define an Hour definition 8-16, then this means from

08:00 to 16:59:59 (unless you filter the Minutes down to something else).

If you close the Time Sets management, you can assign your new time set to the call forwards you’re configuring.

6.3 Limiting Subscriber Preferences via Subscriber Profiles

The preferences a subscriber can provision by himself via the CSC can be limited via profiles within profile sets assigned to

subscribers.

6.3.1 Subscriber Profile Sets

Profile sets define containers for profiles. The idea is to define profile sets with different profiles by the administrator (or the reseller,

if he is permitted to do so). Then, a subscriber with administrative privileges can re-assign profiles within his profile sets for the

subscribers of his customer account.

77

The sip:provider PRO Handbook mr3.8.8 78 / 236

Profile Sets can be defined in Settings→Subscriber Profiles. To create a new Profile Set, click Create Subscriber Profile Set.

You need to provide a reseller, name and description.

To create Profiles within a Profile Set, hover over the Profile Set and click the Profiles button.

Profiles within a Profile Set can be created by clicking the Create Subscriber Profile button.

78

The sip:provider PRO Handbook mr3.8.8 79 / 236

Checking the Default Profile option causes this profile to get assigned automatically to all subscribers, who have the profile set

assigned. Other options define the user preferences which should be made available to the subscriber.

6.4 Voicemail System

6.4.1 Accessing the IVR Menu

For a subscriber to manage his voicebox via IVR, there are two ways to access the voicebox. One is to call the URI voicebox@

yourdomain from the subscriber itself, allowing password-less access to the IVR, as the authentication is already done on SIP

level. The second is to call the URI voiceboxpass@yourdomain from any subscriber, causing the system to prompt for a

mailbox and a PIN.

Mapping numbers and codes to IVR access

Since access might need to be provided from external networks like PSTN/Mobile, and since certain SIP phones don’t support

calling alphanumeric numbers to dial voicebox, you can map any arbitrary number to the voicebox URIs using rewrite rules.

To do so, you can provision a match pattern like ˆ(00|\+)12345$ with a replace pattern voicebox or voiceboxpass to

79

The sip:provider PRO Handbook mr3.8.8 80 / 236

map a number to either password-less or password-based IVR access.

External IVR access

When reaching voiceboxpass, the subscriber is prompted for her mailbox number and a password. All numbers assigned to

a subscriber are valid input (primary number and any alias number). By default, the required format is in E.164, so the subscriber

needs to enter the full number including country code, for example 4912345 if she got assigned a German number.

You can globally configure a rewrite rule in config.yml using asterisk.voicemail.normalize_match and aster

isk.voicemail.normalize_replace, allowing you to customize the format a subscriber can enter, e.g. having ˆ0([1-

9][0-9]+)$ as match part and 49$1 as replace part to accept German national format.

6.4.2 IVR Menu Structure

The following list shows you how the voicebox menu is structured.

• 1 Read voicemail messages

– 3 Advanced options

* 3 To Hear messages Envelope

* * Return to the main menu

– 4 Play previous message

– 5 Repeat current message

– 6 Play next message

– 7 Delete current message

– 9 Save message in a folder

* 0 Save in new Messages

* 1 Save in old Messages

* 2 Save in Work Messages

* 3 Save in Family Messages

* 4 Save in Friends Messages

* # Return to the main menu

• 2 Change folders

– 0 Switch to new Messages

– 1 Switch to old Messages

– 2 Switch to Work Messages

– 3 Switch to Family Messages

– 4 Switch to Friends Messages

– # Get Back

80

The sip:provider PRO Handbook mr3.8.8 81 / 236

• 3 Advanced Options

– * To return to the main menu

• 0 Mailbox options

– 1 Record your unavailable message

* 1 accept it

* 2 Listen to it

* 3 Rerecord it

– 2 Record your busy message

* 1 accept it

* 2 Listen to it

* 3 Rerecord it

– 3 Record your name

* 1 accept it

* 2 Listen to it

* 3 Rerecord it

– 4 Record your temporary greetings

* 1 accept it

* 2 Listen to it

* 3 Rerecord it

– 5 Change your password

– * To return to the main menu

• * Help

• # Exit

6.5 Configuring Subscriber IVR Language

The language for the Voicemail system IVR or Vertical Service Codes (VSC) IVRs may be set using the subscriber or domain

preference language.

81

The sip:provider PRO Handbook mr3.8.8 82 / 236

The sip:provider PRO provides the pre-installed prompts for the Voicemail in the English, Spanish, French and Italian languages

and the pre-installed prompts for the Vertical Service Codes IVRs in English only.

The other IVRs such as the Conference system and the error announcements use the Sound Sets configured in NGCP Panel and

uploaded by the administrator in his language of choice.

6.6 Sound Sets

The sip:provider PRO provides the administrator with ability to upload the voice prompts such as conference prompts or call error

announcements on the Sound Sets page. There is a preference sound_set on Domain and Subscriber levels to link subscribers

to the sound set that they should hear (as usual the subscriber preference overrides the domain one). Sound Sets can be defined

in Settings→Sound Sets. To create a new Sound Set, click Create Sound Set. Then click the Files button.

82

The sip:provider PRO Handbook mr3.8.8 83 / 236

Note

You may use 8 or 16 bit mono WAV audio files for all of the voice prompts.

6.6.1 Configuring Early Reject Sound Sets

The call error announcements are grouped under Early Rejects section. Unfold the section and click Upload next to the sound

handles (Names) that you want to use. Choose a WAV file from your file system, and click the Loopplay setting if you want to play

the file in a loop instead of just once. Click Save to upload the file.

83

The sip:provider PRO Handbook mr3.8.8 84 / 236

The call error announcements are played to the user in early media hence the name "Early Reject". If you don’t provide the sound

files for any handles they will not be used and the sip:provider PRO will fallback to sending the error response code back to the

user.

Table 1: Early Reject Sound Sets

Handle Description Message played

block_in This is what the calling party hears

when a call is made from a number

that is blocked by the incoming block

list (adm_block_in_list, block_in_list

subscriber preferences)

Your call is blocked by the number you

are trying to reach.

block_out This is what the calling party hears

when a call is made to a number that

is blocked by the outgoing block list

(adm_block_out_list, block_out_list

subscriber preferences)

Your call to the number you are trying

to reach is blocked.

block_ncos This is what the calling party hears

when a call is made to a number that

is blocked by the NCOS level assigned

to the subscriber or domain (the

NCOS level chosen in ncos and

adm_ncos preferences)

Your call to the number you are trying

to reach is not permitted.

84

The sip:provider PRO Handbook mr3.8.8 85 / 236

Table 1: (continued)

Handle Description Message played

block_override_pin_wrong Announcement played to calling party

if it used wrong PIN code to override

the outgoing user block list or the

NCOS level for this call (the PIN set by

block_out_override_pin and

adm_block_out_override_pin

preferences)

The PIN code you have entered is not

correct.

locked_in Announcement played on incoming

call to a subscriber that is locked for

incoming calls

The number you are trying to reach is

currently not permitted to receive calls.

locked_out Announcement played on outgoing call

to subscriber that is locked for

outgoing calls

You are currently not allowed to place

outbound calls.

max_calls_in Announcement played on incoming

call to a subscriber who has exceeded

the concurrent_max limit by sum of

incoming and outgoing calls or whose

customer has exceeded the

concurrent_max_per_account limit by

sum of incoming and outgoing calls

The number you are trying to reach is

currently busy. Please try again later.

max_calls_out Announcement played on outgoing call

to a subscriber who has exceeded

the concurrent_max (total limit) or

concurrent_max_out (limit on number

of outbound calls) or whose customer

has exceeded the

concurrent_max_per_account or

concurrent_max_out_per_account

limit

All outgoing lines are currently in use.

Please try again later.

max_calls_peer Announcement played on calls from

the peering if that peer has reached

the maximum number of concurrent

calls (configured by admin in

concurrent_max preference of peering

server)

The network you are trying to reach is

currently busy. Please try again later.

unauth_caller_ip This is what the calling party hears

when it tries to make a call from

unauthorized IP address or network

(allowed_ips, man_allowed_ips

preferences)

85

The sip:provider PRO Handbook mr3.8.8 86 / 236

Table 1: (continued)

Handle Description Message played

You are not allowed to place calls from

your current network location.

relaying_denied Announcement played on inbound call

from trusted IP (e.g. external PBX)

with non-local Request-URI domain

The network you are trying to reach is

not available.

invalid_speeddial This is what the calling party hears

when it calls an empty speed-dial slot

The speed dial slot you are trying to

use is not available.

cf_loop Announcement played when the called

subscriber has the call forwarding

configured to itself

The number you are trying to reach is

forwarded to an invalid destination.

callee_offline Announcement played on incoming

call to the subscriber which is currently

not registered

The number you are trying to reach is

currently not available. Please try

again later.

callee_busy Announcement played on incoming

call to the subscriber which is currently

busy (486 response from the UAS)

The number you are trying to reach is

currently busy. Please try again later.

callee_unknown Announcement that is played on call to

unknown or invalid number (not

associated with any of our

subscribers/hunt groups)

The number you are trying to reach is

not in use.

callee_tmp_unavailable Announcement played on incoming

call to the subscriber which is currently

unavailable (408, other 4xx or no

response code or 30x with malformed

contact)

The number you are trying to reach is

currently not available. Please try

again later.

peering_unavailable Announcement played in case of

outgoing off-net call when there is no

peering rule matching this destination

and/or source

The network you are trying to reach is

not available.

voicebox_unavailable Announcement played on call to

voicebox if the voicemail server is not

configured (system operation is

impaired)

The voicemail of the number you are

trying to reach is currently not

available. Please try again later.

emergency_unsupported Announcement played when

emergency destination is dialed but

the emergency calls are

administratively prohibited for this user

or domain (reject_emergency

preference is enabled)

You are not allowed to place

emergency calls from this line. Please

use a different phone.

no_credit Announcement played when prepaid

account has insufficient balance to

make a call to this destination

86

The sip:provider PRO Handbook mr3.8.8 87 / 236

6.7 Conference System

The sip:provider PRO provides the simple pin-protected conferencing service built using the SEMS DSM scripting language.

Hence it is open for all kinds of modifications and extensions.

Template files for the sems conference scripts stored in /etc/ngcp-config/templates/etc/ngcp-sems/ :

• IVR script: /etc/ngcp-config/templates/etc/ngcp-sems/dsm/confpin.dsm.tt2

• Config: /etc/ngcp-config/templates/etc/ngcp-sems/dsm/confpin.conf.tt2

6.7.1 Configuring Call Forward to Conference

Go to your Subscriber Preferences and click Edit on the Call Forward Type you want to set (e.g. Call Forward Unconditional).

You should select Conference option in the Destination field and leave the URI/Number empty. The timeout defines for how long

this destination should be tried to ring.

87

The sip:provider PRO Handbook mr3.8.8 88 / 236

6.7.2 Configuring Conference Sound Sets

Sound Sets can be defined in Settings→Sound Sets. To create a new Sound Set, click Create Sound Set. Then click the Files

button.

Upload the following files:

Table 2: Conference Sound Sets

Handle Message played

conference_greeting Welcome to the conferencing service. Please enter your

PIN, followed by the pound key.

conference_pin_wrong You have entered an invalid PIN number. Please try again.

conference_joined You will be placed into the conference.

conference_join A person has joined the conference.

conference_leave A person has left the conference.

goodbye Goodbye.

Note

You may use 8 or 16 bit mono WAV audio files.

Then set the preference sound_set on the Domain or Subscriber level in order to assign the Sound Set you have just created to

the subscriber (as usual the subscriber preference overrides the domain one).

88

The sip:provider PRO Handbook mr3.8.8 89 / 236

6.7.3 Entering the Conference with a PIN

It is mandatory to configure the PIN code for entrance to the conference on the same subscriber which has the Call Forwarding

active. Responsible for this is the conference_pin preference in the Internals section of subscriber preferences.

When calling the conference IVR you are requested to enter this PIN. Upon the successful entry of the PIN the caller hears the

announcement that he is going to be placed into a conference and at the same time this is announced to all participants in the

conference.

89

The sip:provider PRO Handbook mr3.8.8 90 / 236

7 Customer Self-Care Interfaces

There are two ways for end users to maintain their subscriber settings: via the Customer Self-Care Web Interface and via Vertical

Service Codes using their SIP phones.

7.1 The Customer Self-Care Web Interface

The NGCP provides a web panel for end users (CSC panel) to maintain their subscriber accounts, which is running on https://<ce-

ip>. Every subscriber can log in there, change subscriber feature settings, view their call lists, retrieve voicemail messages and

trigger calls using the click-to-dial feature.

7.1.1 Login Procedure

To log into the CSC panel, the end user has to provide his full web username (e.g. user1@1.2.3.4) and the web password

defined in Section 5.2. Once logged in, he can change his web password in the Account section. This will NOT change his SIP

password, so if you control the end user devices, you can auto-provision the SIP password into the device and keep it secret, and

just hand over the web password to the customer. This way, the end user will only be able to place calls with this auto-provisioned

device and not with an arbitrary soft-phone, but can nonetheless manage his account via the CSC panel.

Important

You can simplify the login procedure for one SIP domain in such a way that users in this domain only need to pass

the user part (e.g. user1) as a username instead of the full web username to log in by setting the parameter

www_csc→site_domain in the config file /etc/ngcp-config/config.yml to the corresponding domain (e.g. 1.2.3.4)

and execute ngcpcfg apply.

7.1.2 Site Customization

As an operator, you can change the appearance of the CSC panel by modifying a couple of parameters in the section

www_csc→site_config of the config file /etc/ngcp-config/config.yml. Modify the site title, your company details and the logo to

reflect your use case.

You can also enable/disable specific languages a user can choose from in the CSC panel. Currently, English (en), French (fr),

German (de) and Spanish (es) are supported and English is activated by default.

After changing one or more of the parameters in this file, execute ngcpcfg apply to activate the changes.

7.2 The Vertical Service Code Interface

Vertical Service Codes (VSC) are codes a user can dial on his phone to provision specific features for his subscriber account. The

format is *<code>*<value> to activate a specific feature, and #<code> or #<code># to deactivate it. The code parameter

is a two-digit code, e.g. 72. The value parameter is the value being set for the corresponding feature.

90

The sip:provider PRO Handbook mr3.8.8 91 / 236

Important

The value user input is normalized using the Rewrite Rules Sets assigned to domain as described in Section 5.6.

By default, the following codes are configured for setting features. The examples below assume that there is a domain rewrite rule

normalizing the number format 0<ac><sn> to <cc><ac><sn> using 43 as country code.

• 72 - enable Call Forward Unconditional e.g. to 431000 by dialing *72*01000, and disable it by dialing #72.

• 90 - enable Call Forward on Busy e.g. to 431000 by dialing *90*01000, and disable it by dialing #90.

• 92 - enable Call Forward on Timeout e.g. after 30 seconds of ringing to 431000 by dialing *92*30*01000, and disable it by

dialing #92.

• 93 - enable Call Forward on Not Available e.g. to 431000 by dialing *93*01000, and disable it by dialing #93.

• 50 - set Speed Dial Slot, e.g. set slot 1 to 431000 by dialing *50*101000, which then can be used by dialing *1.

• 55 - set One-Shot Reminder Call e.g. to 08:30 by dialing *55*0830.

• 31 - set Calling Line Identification Restriction for one call, e.g. to call 431000 anonymously dial *31*01000.

• 80 - call using Call Block Override PIN, number should be prefixed with a block override PIN configured in admin panel to

disable the outgoing user/admin block list and NCOS level for a call. For example, when override PIN is set to 7890, dial

*80*789001000 to call 431000 bypassing block lists.

You can change any of the codes (but not the format) in /etc/ngcp-config/config.yml in the section sems→vsc. After the changes,

execute ngcpcfg apply.

Caution

If you have the EMTAs under your control, make sure that the specified VSCs don’t overlap with EMTA-internal VSCs,

because the VSC calls must be sent to the NGCP via SIP like normal telephone calls.

7.3 The Voicemail Interface

NGCP offers several ways to access the Voicemail box.

The CSC panel allows your users to listen to voicemail messages from the web browser, delete them and call back the user who

left the voice message. User can setup voicemail forwarding to the external email and the PIN code needed to access the voicebox

from any telephone also from the CSC panel.

To manage the voice messages from SIP phone: simply dial internal voicemail access number 2000.

To change the access number: look for the parameter voicemail_number in /etc/ngcp-config/config.yml in the section sems→vsc.

After the changes, execute ngcpcfg apply.

91

The sip:provider PRO Handbook mr3.8.8 92 / 236

Tip

To let the callers leave a voice message when user is not available he should enable Call Forward to Voicebox. The Call

Forward can be provisioned from the CSC panel as well as by dialing Call Forward VSC with the voicemail number. E.g. when

parameter voicemail_number is set to 9999, a Call Forward on Not Available to the Voicebox is set if the user dials *93*9999.

As a result, all calls will be redirected to the Voicebox if SIP phone is not registered.

To manage the voice messages from any phone:

• As an operator, you can setup some DID number as external voicemail access number: for that, you should add a special rewrite

rule (Inbound Rewrite Rule for Callee, see Section 5.6.) on the incoming peer, to rewrite that DID to "voiceboxpass". Now when

user calls this number the call will be forwarded to the voicemail server and he will be prompted for mailbox and password. The

mailbox is the full E.164 number of the subscriber account and the password is the PIN set in the CSC panel.

• The user can also dial his own number from PSTN, if he setup Call Forward on Not Available to the Voicebox, and when reaching

the voicemail server he can interrupt the "user is unavailable" message by pressing * key and then be prompted for the PIN.

After entering PIN and confirming with # key he will enter own voicemail menu. PIN is random by default and must be kept

secret for that reason.

92

The sip:provider PRO Handbook mr3.8.8 93 / 236

8 Billing Configuration

This chapter describes the steps necessary to rate calls and export rated CDRs (call detail records) to external systems.

8.1 Billing Data Import

Service billing on the NGCP is based on billing profiles, which may be assigned to VoIP accounts and SIP peerings. The design

focuses on a simple, yet flexible approach, to support arbitrary dial-plans without introducing administrative overhead for the

system administrators. The billing profiles may define a base fee and free time or free money per billing interval. Unused free time

or money automatically expires at the end of the billing interval.

Each profile may have call destinations (usually based on E.164 number prefix matching) with configurable fees attached. Call

destination fees each support individual intervals and rates, with a different duration and/or rate for the first interval. (e.g.: charge

the first minute when the call is opened, then every 30 seconds, or make it independent of the duration at all) It is also possible

to specify different durations and/or rates for peak and off-peak hours. Peak time may be specified based on weekdays, with

additional support for manually managed dates based on calendar days. The call destinations can finally be grouped for an

overview on user’s invoices by specifying a zone in two detail levels. (E.g.: national landline, national mobile, foreign 1, foreign 2,

etc.)

8.1.1 Creating Billing Profiles

The first step when setting up billing data is to create a billing profile, which will be the container for all other billing related data.

Go to Settings→Billing and click on Create Billing Profile.

93

The sip:provider PRO Handbook mr3.8.8 94 / 236

The fields Reseller, Handle and Name are mandatory.

• Reseller: The reseller this billing profile belongs to.

• Handle: A unique, permanently fixed string which is used to attach the billing profile to a VoIP account or SIP peering contract.

• Name: A free form string used to identify the billing profile in the Admin Panel. This may be changed at any time.

• Prepaid: Enables prepaid accounting for this profile as opposed to normal post-paid mode.

• Interval charge: A base fee for the billing interval, specifying a monetary amount (represented as a floating point number) in

whatever currency you want to use.

• Interval free time: If you want to include free calling time in your billing profile, you may specify the number of seconds that are

available every billing interval. See Creating Billing Fees below on how to select destinations which may be called using the free

time.

• Interval free cash: Same as for interval free time above, but specifies a monetary amount which may be spent on outgoing

calls. This may be used for example to implement a minimum turnover for a contract, by setting the interval charge and interval

free cash to the same values.

• Fraud monthly limit: The monthly fraud detection limit (in Cent) for accounts with this billing profile. If the call fees of an account

reach this limit within a billing interval, an action can be triggered.

• Fraud monthly lock: a choice of none, foreign, outgoing, incoming, global. Specifies a lock level which will be used to lock the

account and his subscribers when fraud monthly limit is exceeded.

94

The sip:provider PRO Handbook mr3.8.8 95 / 236

• Fraud monthly notify: An email address or comma-separated list of email addresses that will receive notifications when fraud

monthly limit is exceeded.

• Fraud daily limit: The fraud detection limit (in Cent) for accounts with this billing profile. If the call fees of an account reach this

limit within a calendar day, an action can be triggered.

• Fraud daily lock: a choice of none, foreign, outgoing, incoming, global. Specifies a lock level which will be used to lock the

account and his subscribers when fraud daily limit is exceeded.

• Fraud daily notify: An email address or comma-separated list of email addresses that will receive notifications when fraud daily

limit is exceeded.

• Currency: The currency symbol for your currency. Any UTF-8 character may be used and will be printed in web interfaces.

• VAT rate: The percentage of value added tax for all fees in the billing profile. Currently for informational purpose only and not

used further.

• VAT included: Whether VAT is included in the fees entered in web forms or uploaded to the platform. Currently for informational

purpose only and not used further.

8.1.2 Creating Billing Fees

Each Billing Profile holds multiple Billing Fees.

To set up billing fees, click on the Fees button of the billing profile you want to configure. Billing fees may be uploaded using a

configurable CSV file format, or entered directly via the web interface by clicking Create Fee Entry. To configure the CSV field

order for the file upload, rearrange the entries in the www_admin→fees_csv→element_order array in /etc/ngcp-config/config.yml

and execute the command ngcpcfg apply. For input via the web interface, just fill in the text fields accordingly.

95

The sip:provider PRO Handbook mr3.8.8 96 / 236

In both cases, the following information may be specified independently for every destination:

• Zone: A zone for a group of destinations. May be used to group destinations for simplified display, e.g. on invoices. (e.g.

foreign zone 1)

• Source: The source pattern. This is a POSIX regular expression matching the complete source URI (e.g. ˆ.*@sip\.

example\.org$ or ˆsomeone@sip\.sipwise\.com$ or just . to match everything). If you leave this field empty, the

default pattern . matching everything will be set implicitly. Internally, this pattern will be matched against the <source_cli>@

<source_domain> fields of the CDR.

• Destination: The destination pattern. This is a POSIX regular expression matching the complete destination URI (e.g. some

one@sip\.example\.org or ˆ43). This field must be set.

• Direction: Outbound for standard origination fees (applies to callers placing a call and getting billed for that) or Inbound for

termination fees (applies to callees if you want to charge them for receiving various calls, e.g. for 800-numbers). If in doubt, use

Outbound. If you upload fees via CSV files, use out or in, respectively.

Important

The {source, destination, direction} combination needs to be unique for a billing profile. The system will return an error

if such a set is specified twice, both for the file upload and the input via the web interface.

96

The sip:provider PRO Handbook mr3.8.8 97 / 236

Important

There are several internal services (vsc, conference, voicebox, fax2mail) which will need a specific destination entry

with a domain-based destination. If you don’t want to charge the same (or nothing) for those services, add a fee for

destination \.local$ there. If you want to charge different amounts for those services, break it down into separate fee

entries for @fax2mail\.local$, @vsc\.local$, @conference\.local$ and @voicebox\.local$

with the according fees. NOT CREATING EITHER THE CATCH-ALL FEE OR THE SEPARATE FEES FOR THE .

local DOMAIN WILL BREAK YOUR RATING PROCESS!

• Onpeak init rate: The rate for the first rating interval in cent (of whatever currency, represented as a floating point number) per

second. Applicable to calls during onpeak hours.

• Onpeak init interval: The duration of the first billing interval, in seconds. Applicable to calls during onpeak hours.

• Onpeak follow rate: The rate for subsequent rating intervals in cent (of whatever currency, represented as a floating point

number) per second. Applicable to calls during onpeak hours. Defaults to onpeak init rate.

• Onpeak follow interval: The duration of subsequent billing intervals, in seconds. Applicable to calls during onpeak hours.

Defaults to onpeak init interval.

• Offpeak init rate: The rate for the first rating interval in cent (of whatever currency, represented as a floating point number) per

second. Applicable to calls during off-peak hours. Defaults to onpeak init rate.

• Offpeak init interval: The duration of the first billing interval, in seconds. Applicable to calls during off-peak hours. Defaults to

onpeak init interval.

• Offpeak follow rate: The rate for subsequent rating intervals in cent (of whatever currency, represented as a floating point

number) per second. Applicable to calls during off-peak hours. Defaults to offpeak init rate if that one is specified, or to onpeak

follow rate otherwise.

• Offpeak follow interval: The duration of subsequent billing intervals, in seconds. Applicable to calls during off-peak hours.

Defaults to offpeak init interval if that one is specified, or to onpeak follow interval otherwise.

• Use free time: Specifies whether free time minutes may be used when calling this destination. May be specified in the file

upload as 0, n[o], f[alse] and 1, y[es], t[rue] respectively.

8.1.3 Creating Off-Peak Times

To be able to differentiate between on-peak and off-peak calls, the platform stores off-peak times for every billing profile based on

weekdays and/or calendar days. To edit the settings for a billing profile, go to Settings→Billing and press the Peaktimes button on

the billing profile you want to configure.

To set off-peak times for a weekday, click on Edit next to the according weekday. You will be presented with two input fields which

both receive a timestamp in the form of hh:mm:ss specifying a time of day for the start and end of the off-peak period. If any of

the fields is left empty, the system will automatically insert 00:00:00 (start field) or 23:59:59 (end field). Click on Add to store

the setting in the database. You may create more than one off-peak period per weekday. To delete a range, just click Delete next

to the entry. Click the close icon when done.

97

The sip:provider PRO Handbook mr3.8.8 98 / 236

To specify off-peak ranges based on calendar dates, click on Create Special Off-Peak Date. Enter a date in the form of YYYY-

MM-DD hh:mm:ss into the Start Date/Time input field and End Date/Time input field to define a range for the off-peak period.

98

The sip:provider PRO Handbook mr3.8.8 99 / 236

8.1.4 Prepaid Accounting

In a normal post-paid accounting scenario, each customer accumulates debt in their billing account, which at the end of the billing

interval is then billed to the customer. A prepaid billing profile reverses this sequence: the customer first has to provide credit to

their account balance, and the costs for all calls are then deducted from that account balance. Once the balance reaches zero, no

further calls from this customer are accepted, with the exception of free calls. Additionally, if the balance drops to zero while any

calls are currently active, NGCP will disconnect those calls as soon as that happens.

With prepaid billing enabled, all details of the billing profile and all details of the billing fees behave as they normally do, including

interval free time. If any interval free time is given, the free time will be used before the account’s credit is.

Important

For technical reasons, the system can make the distinction between on-peak and off-peak times only at call establish-

ment time. In other words, if the currently active call fee at the moment when the call is established is an off-peak fee,

then the same off-peak fee will remain active for the whole length of this call, even if the call actually transitions into an

on-peak fee (and vice versa).

Important

For technical reasons, prepaid billing can’t charge local endpoint calls such calls to Voicebox check, VSC calls or calls

to Conference Room.

99

The sip:provider PRO Handbook mr3.8.8 100 / 236

8.1.5 Fraud Detection and Locking

The NGCP supports a fraud detection feature, which is designed to detect accounts causing unusually high customer costs, and

then to perform one of several actions upon those accounts. This feature can be enabled and configured through two sets of billing

profile options described in Section 8.1.1, namely the monthly (fraud monthly limit, fraud monthly lock and fraud monthly notify)

and daily limits (fraud daily limit, fraud daily lock and fraud daily notify). Either monthly/daily limits or both of them can be active at

the same time.

Once a day, shortly after midnight local time, a background script automatically checks all accounts which are linked to a billing

profile enabled for fraud detection, and selects those which have caused a higher cost than the fraud monthly limit configured in

the billing profile, within the currently active billing interval (e.g. in the current month), or a higher cost than the fraud daily limit

configured in the billing profile, within the calendar day. It then proceeds to perform at least one of the following actions on those

accounts:

• If fraud lock is set to anything other than none, it will lock the account accordingly (e.g. if fraud lock is set to outgoing, the

account will be locked for all outgoing calls).

• If anything is listed in fraud notify, an email will be sent to the email addresses configured. The email will contain information

about which account is affected, which subscribers within that account are affected, the current account balance and the con-

figured fraud limit, and also whether or not the account was locked in accordance with the fraud lock setting. It should be noted

that this email is meant for the administrators or accountants etc., and not for the customer.

Important

You can override these settings on a per-account basis via SOAP or the Admin interface.

Caution

Accounts that were automatically locked by the fraud detection feature will not be automatically unlocked when the

next billing interval starts. This has to be done manually through the administration panel or through the provisioning

interface.

Important

If fraud detection is configured to only send an email and not lock the affected accounts, it will continue to do so for

over-limit accounts every day. The accounts must either be locked in order to stop the emails (only currently active

accounts are considered when the script looks for over-limit accounts) or some other action to resolve the conflict must

be taken, such as disabling fraud detection for those accounts.

8.2 Billing Data Export

Regular billing data export is done using CSV (comma separated values) files which may be downloaded from the platform using

the cdrexport user which has been created during the installation.

100

The sip:provider PRO Handbook mr3.8.8 101 / 236

There are two types of exports. One is CDR (Call Detail Records) used to charge for calls made by subscribers, and the other is

EDR (Event Detail Records) used to charge for provisioning events like enabling certain features.

8.2.1 File Name Format

In order to be able to easily identify billing files, the file names are constructed by the following fixed-length fields:

<prefix><separator><version><separator><timestamp><separator><sequence number>< ←↩
suffix>

The definition of the specific fields is as follows:

Table 3: CDR/EDR export file name format

File name element Length Description

<prefix> 7 A fixed string. Always sipwise.

<separator> 1 A fixed character. Always _.

<version> 3 The format version, a three digit number. Currently 007.

<timestamp> 14 The file creation timestamp in the format YYYYMMDDhhmmss.

<sequence number> 10 A unique 10-digit zero-padded sequence number for quick identification.

<suffix> 4 A fixed string. Always .cdr or .edr.

A valid example filename for a CDR billing file created at 2012-03-10 14:30:00 and being the 42nd file exported by the system, is:

sipwise_007_20130310143000_0000000042.cdr

8.2.2 File Format

Each billing file consists of three parts: one header line, zero to 5000 body lines and one trailer line.

File Header Format

The billing file header is one single line, which is constructed by the following fields:

<version>,<number of records>

The definition of the specific fields is as follows:

101

The sip:provider PRO Handbook mr3.8.8 102 / 236

Table 4: CDR/EDR export file header line format

Body Element Length Type Description

<version> 3 zero-

padded

uint

The format version. Currently 007.

<number of records> 4 zero-

padded

uint

The number of body lines contained in the file.

A valid example for a Header is:

007,0738

File Body Format for Call Detail Records (CDR)

The body of a CDR consists of a minimum of zero and a maximum of 5000 lines. Each line holds one call detail record in CSV

format and is constructed by the following fields, all of them enclosed in single quotes:

Table 5: CDR export file body line format

Body Element Length Type Description

<id> 1-10 uint Internal CDR id.

<update_time> 19 timestamp Timestamp of last modification.

<source_user_id> 36 string Internal UUID of calling party subscriber.

<source_provider_id> 1-255 string Internal ID of calling party provider.

<source_ext_subscriber_

id>

0-255 string External ID of calling party subscriber.

<source_subscriber_id> 1-10 uint Internal ID of calling party subscriber.

<source_ext_account_id> 0-255 string External ID of calling party VoIP account.

<source_account_id> 1-10 uint Internal ID of calling party VoIP account.

<source_user> 1-255 string SIP username of calling party.

<source_domain> 1-255 string SIP domain of calling party.

<source_cli> 1-64 string CLI of calling party in E.164 format.

<source_clir> 1 uint 1 for calls with CLIR, 0 otherwise.

<source_ip> 0-64 string IP Address of the calling party.

<destination_user_id> 1 / 36 string Internal UUID of called party subscriber or 0 if callee is

not local.

<destination_provider_

id>

1-255 string Internal ID of called party provider.

<dest_ext_subscriber_id> 0-255 string External ID of called party subscriber.

102

The sip:provider PRO Handbook mr3.8.8 103 / 236

Table 5: (continued)

Body Element Length Type Description

<dest_subscriber_id> 1-10 uint Internal ID of called party subscriber.

<dest_ext_account_id> 0-255 string External ID of called party VoIP account.

<destination_account_id> 1-10 uint Internal ID of called party VoIP account.

<destination_user> 1-255 string Final SIP username of called party.

<destination_domain> 1-255 string Final SIP domain of called party.

<destination_user_in> 1-255 string Incoming SIP username of called party.

<destination_domain_in> 1-255 string Incoming SIP domain of called party.

<dialed_digits> 1-255 string The user-part of the SIP Request URI as received by the

soft-switch.

<peer_auth_user> 0-255 string User to authenticate towards peer.

<peer_auth_realm> 0-255 string Realm to authenticate towards peer.

<call_type> 3-4 string The type of the call - one of:

call: normal call

cfu: call forward unconditional

cft: call forward timeout

cfb: call forward busy

cfna: call forward no answer

<call_status> 2-7 string The final call status - one of:

ok: successful call

busy: callee busy

noanswer: no answer from callee

cancel: cancel from caller

offline callee offline

timeout: no reply from callee

other: unspecified, see <call_code> for details

<call_code> 3 uint The final SIP status code.

<init_time> 23 timestamp Timestamp of call initiation (invite received from caller).

Seconds include fractional part (3 decimals).

<start_time> 23 timestamp Timestamp of call establishment (final response received

from callee). Seconds include fractional part (3

decimals).

<duration> 4-11 fixed

precision

Length of call (beginning at start_time) in seconds

with 3 decimals.

<call_id> 1-255 string The SIP call-id.

<rating_status> 2-7 string The internal rating status - one of:

unrated: not rated

ok: successfully rated

failed: error while rating

Currently always ok or unrated, depending on

whether rating is enabled or not.

<rated_at> 0 / 19 timestamp Timestamp of rating or empty if not rated.

103

The sip:provider PRO Handbook mr3.8.8 104 / 236

Table 5: (continued)

Body Element Length Type Description

<source_carrier_cost> 4-11 fixed

precision

The originating carrier cost or empty if not rated. In cent

with two decimals. Only available in system

exports, not for resellers.

<source_customer_cost> 4-11 fixed

precision

The originating customer cost or empty if not rated. In

cent with two decimals.

<source_carrier_zone> 0-127 string The originating carrier billing zone or empty if not rated.

Only available in system exports, not

for resellers.

<source_customer_zone> 0-127 string The originating customer billing zone or empty if not

rated.

<source_carrier_destinat

ion>

0-127 string The originating carrier billing destination or empty if not

rated. Only available in system exports,

not for resellers.

<source_customer_destina

tion>

0-127 string The originating customer billing destination or empty if

not rated.

<source_carrier_free_ti

me>

1-10 uint The number of originating free time seconds used on

carrier side or empty if not rated. Only available

in system exports, not for resellers.

<source_customer_free_ti

me>

1-10 uint The number of originating free time seconds used from

the customer’s account balance or empty if not rated.

<destination_carrier_co

st>

4-11 fixed

precision

The termination carrier cost or empty if not rated. In cent

with two decimals. Only available in system

exports, not for resellers.

<destination_customer_co

st>

4-11 fixed

precision

The termination customer cost or empty if not rated. In

cent with two decimals.

<destination_carrier_zo

ne>

0-127 string The termination carrier billing zone or empty if not rated.

Only available in system exports, not

for resellers.

<destination_customer_zo

ne>

0-127 string The termination customer billing zone or empty if not

rated.

<destination_carrier_des

tination>

0-127 string The termination carrier billing destination or empty if not

rated. Only available in system exports,

not for resellers.

<destination_customer_de

stination>

0-127 string The termination customer billing destination or empty if

not rated.

<destination_carrier_fre

e_time>

1-10 uint The number of termination free time seconds used on

carrier side or empty if not rated. Only available

in system exports, not for resellers.

<destination_customer_fr

ee_time>

1-10 uint The number of termination free time seconds used from

the customer’s account balance or empty if not rated.

104

The sip:provider PRO Handbook mr3.8.8 105 / 236

Table 5: (continued)

Body Element Length Type Description

<source_reseller_cost> 4-11 fixed

precision

The originating reseller cost or empty if not rated. In cent

with two decimals. Only available in system

exports, not for resellers.

<source_reseller_zone> 0-127 string The originating reseller billing zone or empty if not rated.

Only available in system exports, not

for resellers.

<source_reseller_destina

tion>

0-127 string The originating reseller billing destination or empty if not

rated. Only available in system exports,

not for resellers.

<source_reseller_free_ti

me>

1-10 uint The number of originating free time seconds used from

the reseller’s account balance or empty if not rated.

Only available in system exports, not

for resellers.

<destination_reseller_co

st>

4-11 fixed

precision

The termination reseller cost or empty if not rated. In

cent with two decimals. Only available in

system exports, not for resellers.

<destination_reseller_zo

ne>

0-127 string The termination reseller billing zone or empty if not rated.

Only available in system exports, not

for resellers.

<destination_reseller_de

stination>

0-127 string The termination reseller billing destination or empty if not

rated. Only available in system exports,

not for resellers.

<destination_reseller_fr

ee_time>

1-10 uint The number of termination free time seconds used from

the reseller’s account balance or empty if not rated.

Only available in system exports, not

for resellers.

<line_terminator> 1 string A fixed character. Always \n (special char LF - ASCII

0x0A).

A valid example of one body line of a rated CDR is (line breaks added for clarity):

’15’,’2013-03-26 22:09:11’,’a84508a8-d256-4c80-a84e-820099a827b0’,’1’,’’,’1’,’’,

’2’,’testuser1’,’192.168.51.133’,’4311001’,’0’,’192.168.51.1’,

’94d85b63-8f4b-43f0-b3b0-221c9e3373f2’,’1’,’’,’3’,’’,’4’,’testuser3’,

’192.168.51.133’,’testuser3’,’192.168.51.133’,’testuser3’,’’,’’,’call’,’ok’,’200’,

’2013-03-25 20:24:50.890’,’2013-03-25 20:24:51.460’,’10.880’,’44449842’,

’ok’,’2013-03-25 20:25:27’,’0.00’,’24.00’,’onnet’,’testzone’,’platform internal’,

’testzone’,’0’,’0’,’0.00’,’200.00’,’’,’foo’,’’,’foo’,’0’,’0’,

’0.00’,’’,’’,’0’,’0.00’,’’,’’,’0’

105

The sip:provider PRO Handbook mr3.8.8 106 / 236

The format of the CDR export files generated for resellers (as opposed to the complete system-wide export) is identical except for

a few missing fields. Reseller CDR CSV files don’t contain the fields for carrier or reseller ratings, neither in source nor destination

direction. Thus, the reseller CSV files have 16 fewer fields.

File Body Format for Event Detail Records (EDR)

The body of a EDR consists of a minimum of zero and a maximum of 5000 lines. Each line holds one call detail record in CSV

format and is constructed by the following fields, all of them enclosed in single quotes:

Table 6: EDR export file body line format

Body Element Length Type Description

<event_id> 1-10 uint Internal EDR id.

<event_type> 1-255 string The type of the event - one of:

start_profile: A subscriber profile has been newly

assigned to a subscriber.

end_profile: A subscriber profile has been removed

from a subscriber.

update_profile: A subscriber profile has been

changed for a subscriber.

start_huntgroup: A subscriber has been

provisioned as group.

end_huntgroup: A subscriber has been

deprovisioned as group.

start_ivr: A subscriber has a new call-forward to

auto-attendant set.

end_ivr: A subscriber has removed a call-forward to

auto-attendant.

<customer_external_id> 0-255 string The external customer ID as provisioned for the

subscriber.

<contact_company> 0-255 string The company name of the customer’s contact.

<subscriber_external_id> 0-255 string The external subscriber ID as provisioned for the

subscriber.

<subscriber_number> 0-255 string The voip number of the subscriber with the highest ID

(DID or primary number).

106

The sip:provider PRO Handbook mr3.8.8 107 / 236

Table 6: (continued)

Body Element Length Type Description

<old_status> 0-255 string The old status of the event. Depending on the

event_type:

start_profile: Empty.

end_profile: The profile id of the profile which got

removed from the subscriber.

update_profile: The old profile id which got

updated.

start_huntgroup: Empty.

end_huntgroup: The profile id of the group which got

deprovisioned.

start_ivr: Empty.

end_ivr: Empty.

<new_status> 0-255 string The new status of the event. Depending on the

event_type:

start_profile: The profile id which got assigned to

the subscriber.

end_profile: Empty.

update_profile: The new profile id which got

updated.

start_huntgroup: The current profile id assigned to

the group subscriber.

end_huntgroup: The current profile id assigned to

the group subscriber.

start_ivr: Empty.

end_ivr: Empty.

<timestamp> 0-255 string The time when the event occured.

<line_terminator> 1 string A fixed character. Always \n (special char LF - ASCII

0x0A).

A valid example of one body line of an EDR is (line breaks added for clarity):

"1","start_profile","sipwise_ext_customer_id_4","Sipwise GmbH",

"sipwise_ext_subscriber_id_44","436667778","","1","2014-06-19 11:34:31"

File Trailer Format

The billing file trailer is one single line, which is constructed by the following fields:

<md5 sum>

107

The sip:provider PRO Handbook mr3.8.8 108 / 236

The <md5 sum> is a 32 character hexadecimal MD5 hash of the Header and Body.

To validate the billing file, one must remove the Trailer before computing the MD5 sum of the file. An example bash script to

validate the integrity of the file is given below:

#!/bin/sh

error() { echo $@; exit 1; }

test -n "$1" || error "Usage: $0 <cdr-file>"

test -f "$1" || error "File ’$1’ not found"

TMPFILE="/tmp/$(basename "$1").$$"

MD5="$(sed -rn ’$ s/^([a-z0-9]{32}).*$/\1/i p’ "$1") $TMPFILE"

sed ’$d’ "$1" > "$TMPFILE"

echo "$MD5" | md5sum -c -

rm -f "$TMPFILE"

Given the script is located in cdr-md5.sh and the CDR-file is sipwise_001_20071110123000_0000000004.cdr,

the output of the integrity check for an intact CDR file would be:

$./cdr-md5.sh sipwise_001_20071110123000_0000000004.cdr

/tmp/sipwise_001_20071110123000_0000000004.cdr: OK

If the file has been altered during transmission, the output of the integrity check would be:

$./cdr-md5.sh sipwise_001_20071110123000_0000000004.cdr

/tmp/sipwise_001_20071110123000_0000000004.cdr: FAILED

md5sum: WARNING: 1 of 1 computed checksum did NOT match

8.2.3 File Transfer

Billing files are created twice per hour at minutes 25 and 55 and are stored in the home directory of the cdrexport user. If the

amount of records within the transmission interval exceeds the threshold of 5000 records per file, multiple billing files are created.

If no billing records are found for an interval, a billing file without body data is constructed for easy detection of lost billing files on

the 3rd party side.

CDR and EDR files are fetched by a 3rd party billing system using SFTP or SCP with either public key or password authentication

using the username cdrexport.

If public key authentication is chosen, the public key file has to be stored in the file ~/.ssh/authorized_keys2 below the

home directory of the cdrexport user. Otherwise, a password has to be set for the user.

The 3rd party billing system is responsible for deleting CDR files after fetching them.

Note

The cdrexport user is kept in a jailed environment on the system, so it has only access to a very limited set of commandline

utilities.

108

The sip:provider PRO Handbook mr3.8.8 109 / 236

9 Invoices and invoice templates

The sip:provider PRO allows to generate and send customer invoices for each billing period based on Calls Detailed Records

(CDR). Generated invoices can be sent to customers emails using invoice generation script Section 9.3.

Invoices present billing information from the reseller point of view. Recipients of the invoices are customers. Invoices include

information related to the calls made by subscribers associated with the customer.

By default invoice contains information about billing plan fixed fee, calls zones fees and calls detailed information.

Content and vision of the invoices are customizable by invoice templates Section 9.2.

Note

The sip:provider PRO generates invoices in pdf format.

9.1 Invoices management

Invoices can be requested for generation, searched, downloaded and deleted in the invoices interface.

To request invoice generation for the particular customer and period press "Create invoice" button. On the invoice creation form

following parameters are available for selection:

• Template: any of existent invoice template can be selected for the invoice generation.

• Customer: owner of the billing account, recipient of the invoice.

• Invoice period: billing period. Can be specified only as one calendar month. Calls with start time between first and last second

of the period will be considered for the invoice

109

The sip:provider PRO Handbook mr3.8.8 110 / 236

All form fields are mandatory.

Generated invoice can be downloaded as pdf file.

To do it press button "Download" against invoice in the invoice management interface.

Respectively press on the button "Delete" to delete invoice.

110

The sip:provider PRO Handbook mr3.8.8 111 / 236

9.2 Invoice templates

Invoice template defines structure and look of the generated invoices. The sip:provider PRO allows to create some invoice

templates. Multiple invoice templates can be used to send invoices to the different customers using different languages.

Important

At least one invoice template should be created to enable invoice generation. Each customer has to be associated to

one of the existent invoice template, otherwise invoices will be not generated for this customer.

Customer can be linked to the invoice template in the customer interface.

9.2.1 Invoice Templates management

Invoice templates can be searched, created, edited and deleted in the invoice templates management interface.

Invoice template creation is separated on two steps:

• Register new invoice template meta information.

• Edit content (template itself) of the invoice template.

To register new invoice template press "Create Invoice Template" button.

On the invoice template meta information form following parameters can be specified:

• Reseller: reseller who owns this invoice template. Please note, that it doesn’t mean that the template will be used for the reseller

customers by default. After creation, invoice template still need to be linked to the reseller customers.

111

The sip:provider PRO Handbook mr3.8.8 112 / 236

• Name: unique invoice template name to differentiate invoice templates if there are some.

• Type: currently sip:provider PRO supports only svg format of the invoice templates.

All form fields are mandatory.

After registering new invoice template you can change invoice template structure in WYSIWYG SVG editor and preview result of

the invoice generation based on the template.

9.2.2 Invoice Template content

Invoice template is a XML SVG source, which describes content, look and position of the text lines, images or other invoice

template elements. The sip:provider PRO provides embedded WYSIWYG SVG editor svg-edit 2.6 to customize default template.

The sip:provider PRO svg-edit has some changes in layers management, image edit, user interface, but this basic introduction still

may be useful.

Template refers to the owner reseller contact ("rescontact"), customer contract ("customer"), customer contact ("custcontact"),

billing profile ("billprof"), invoice ("invoice") data as variables in the "[%%]" mark-up with detailed information accessed as field

name after point e.g. [%invoice.serial%]. During invoice generation all variables or other special tokens in the "[% %]" mark-ups

will be replaced by their database values.

Press on "Show variables" button on invoice template content page to see full list of variables with the fields:

112

http://ehmdunque.altervista.org/i-informatica/manuali/SVG-edit/SVG-Edit_2.6/Short_intro_SVG-edit.html

The sip:provider PRO Handbook mr3.8.8 113 / 236

You can add/change/remove embedded variables references directly in main svg-edit window. To edit text line in svg-edit main

window double click on the text and place cursor on desired position in the text.

After implementation of the desired template changes, invoice template should be saved Section 9.2.3.

To return to the sip:provider PRO invoice template default content you can press on the "Discard changes" button.

Important

"Discard changes" operation can’t be undone.

Layers

Default template contains three groups elements (<g/>), which can be thinked of as pages, or in terms of svg-edit - layers. Layers

are:

• Background: special layer, which will be repeated as background for every other page of the invoice.

• Summary: page with a invoice summary.

• CallList: page with calls made in a invoice period. Is invisible by default.

To see all invoice template layers, press on "Layers" vertical sign on right side of the svg-edit interface:

113

The sip:provider PRO Handbook mr3.8.8 114 / 236

Side panel with layers list will be shown.

114

The sip:provider PRO Handbook mr3.8.8 115 / 236

One of the layers is active, and its element can be edited in the main svg-edit window. Currently active layer’s name is bold in the

layers list. The layers may be visible or invisible. Visible layers have "eye" icon left of their names in the layers list.

To make a layer active, click on its name in the layers list. If the layer was invisible, its elements became visible on activation. Thus

you can see mixed elements of some layers, then you can switch off visibility of other layers by click on their "eye" icons. It is good

idea to keep visibility of the "Background" layer on, so look of the generated page will be seen.

Edit SVG XML source

Sometimes it may be convenient to edit svg source directly and svg-edit allows to do it. After press on the <svg> icon in the top

left corner of the svg-edit interface:

115

The sip:provider PRO Handbook mr3.8.8 116 / 236

SVG XML source of the invoice template will be shown.

SVG source can be edited in place or just copy-pasted as usual text.

Note

Template keeps sizes and distances in pixels.

Important

When edit svg xml source, please change very carefully and thinkfully things inside special comment mark-up "<!--{

}-→". Otherwise invoice generation may be broken. Please be sure that document structure repeats default invoice

template: has the same groups (<g/>) elements on the top level, text inside special comments mark-up "<!--{ }-→"

preserved or changed appropriately, svg xml structure is correct.

To save your changes in the svg xml source, first press "OK" button on the top left corner of the source page:

116

The sip:provider PRO Handbook mr3.8.8 117 / 236

And then save invoice template changes Section 9.2.3.

Note

You can copy and keep the svg source of your template as a file on the disk before start experimenting with the template. Later

you will be able to return to this version replacing svg source.

Change logo image

• Make sure that "Select tool" is active.

• Select default logo, clicking on the logo image.

• Press "Change image" button, which should appear on the top toolbar.

117

The sip:provider PRO Handbook mr3.8.8 118 / 236

After image uploaded save invoice template changes Section 9.2.3.

9.2.3 Save and preview invoice template content.

To save invoice template content changes press button "Save SVG".

You will see message about successfully saved template. You can preview your invoice look in PDF format. Press on "Preview as

PDF" button.

118

The sip:provider PRO Handbook mr3.8.8 119 / 236

Invoice preview will be opened in the new window.

Note

Example fake data will be used for preview generation.

119

The sip:provider PRO Handbook mr3.8.8 120 / 236

9.3 Invoices generation

Except invoices generation on demand using web interface, invoices can be generated automatically for all customers using cron

and invoice generator script.

Also invoice generation script is responsible for the sending generated invoices to the customers.

Script is located at: /usr/share/ngcp-panel/tools/generate_invoices.pl

In short:

• To generate and immediately send invoices for the previous month:

perl /usr/share/ngcp-panel/tools/generate_invoice.pl --send --prevmonth

• To generate invoices for the previous month without sending:

perl /usr/share/ngcp-panel-tools/generate_invoice.pl --prevmonth

• To send already generated invoices for the previous month:

perl /usr/share/ngcp-panel/tools/generate_invoice.pl --sendonly --prevmonth

• Regenerate invoices for the specified period:

perl /usr/share/ngcp-panel/tools/generate_invoice.pl --stime="2015-01-01 00:00:00" ←↩
--etime="2015-01-31 00:00:00" --regenerate

Some not obvious options:

• *--allow_terminated* Generates invoices for the terminated contracts too.

• *--force_unrated* Generate invoices despite unrated calls existence in the specified generation period.

• *--no_empty* Skip invoices for the contracts without calls in the specified period and with null permanent fee for the billing profile.

To see all possible script options use --help or --man:

/usr/share/ngcp-panel/tools/generate_invoices.pl --man

Script will be run periodically as configured by the cron files. Cron files templates can be found at:

• /etc/ngcp-config/templates/etc/cron.d/ngcp-invoice-gen.tt2

• /etc/ngcp-config/templates/etc/cron.d/ngcp-invoice-gen.services

120

The sip:provider PRO Handbook mr3.8.8 121 / 236

After applying your configuration cron file will be located at:

• /etc/cron.d/ngcp-invoice-gen

Script uses configuration file located at: /etc/ngcp-invoice-gen/invoice-gen.conf

Except common DB connection configuration following specific options can be defined in the config file:

• RESELLER_ID 1,2,3,. . . N

Comma separated resellers id. Invoice generation will be performed only for the specified resellers.

• CLIENT_CONTRACT_ID 1,2,3,. . . N

Comma separated customers id. Invoice generation will be performed only for the specified customers.

• STIME YYYY-mm-DD HH:MM:SS

Usually is not necessary. Script option --prevmonth will define correct start and end time for the previous month billing period.

Generated invoices will include all calls with call start time more then STIME value and less the ETIME value.

• ETIME YYYY-mm-DD HH:MM:SS

Usually is not necessary. Script option --prevmonth will define correct start and end time for the previous month billing period.

Generated invoices will include all calls with call start time more then STIME value and less the ETIME value.

• SEND [0|1]

Generated invoices will be immediately sent to the customers.

• RESEND [0|1]

Invoices, already sent to the customers, will be sent again.

• REGENERATE [0|1]

Already presented invoices files will be generated again. Otherwise they will stay intouched.

• ALLOW_TERMINATED [0|1]

Generate invoices for the already terminated customers too.

• ADMIN_EMAIL your@email.com

121

The sip:provider PRO Handbook mr3.8.8 122 / 236

Purposed for notifications about invoices generation fails. Not in use now.

All generated invoices can be seen in the invoice management interface Section 9.1.

On request each invoice will be sent to the proper customer as e-mail with the invoice PDF in the attachment. Letter content is

defined by the invoice email template.

122

The sip:provider PRO Handbook mr3.8.8 123 / 236

10 Email templates

10.1 Email events

The sip:provider PRO allows to customize content of the emails sent on the following actions:

• Web password reset requested. Email will be sent to the subscriber, whom password was requested for resetting. If the

subscriber doesn’t have own email, letter will be sent to the customer, who owns the subscriber.

• New subscriber created. Email will be sent to the newly created subscriber or to the customer, who owns new subscriber.

• Letter with the invoice. Letter will be sent to the customer.

10.2 Initial template values and template variables

Default email templates for each of the email events are inserted on the initial sip:provider PRO database creation. Content of

the default template is described in the appropriate sections. Default email templates aren’t linked to any reseller and can’t be

changed through sip:provider PRO Panel. They will be used to initialize default templates for the newly created reseller.

Each email template refers to the values from the database using special mark-ups "[%" and "%]". Each email template has fixed

set of the variables. Variables can’t be added or changed without changes in the sip:provider PRO Panel code.

10.3 Password reset email template

Email will be sent after subscriber or subscriber administrator requested password reset for the subscriber account. Letter will be

sent to the subscriber. If subscriber doesn’t have own email, letter will be sent to the customer owning the subscriber.

Default content of the password reset email template is:

Template name passreset_default_email

From default@sipwise.com

Subject Password reset email

Body

Dear Customer,

Please go to [%url%] to set your password and log into your self-care ←↩
interface.

Your faithful Sipwise system

--

This is an automatically generated message. Do not reply.

123

mailto:default@sipwise.com

The sip:provider PRO Handbook mr3.8.8 124 / 236

Following variables will be provided to the email template:

• [%url%]: specially generated url where subscriber can define his new password.

• [%subscriber%]: username@domain of the subscriber, which password was requested for reset.

10.4 New subscriber notification email template

Email will be sent on the new subscriber creation. Letter will be sent to the newly created subscriber if it has an email. Otherwise,

letter will be sent to the customer who owns the subscriber.

Note

By default email content template is addressed to the customer. Please consider this when create the subscriber with an email.

Template name subscriber_default_email

From default@sipwise.com

Subject Subscriber created

Body

Dear Customer,

A new subscriber [%subscriber%] has been created for you.

Your faithful Sipwise system

--

This is an automatically generated message. Do not reply.

Following variables will be provided to the email template:

• [%url%]: specially generated url where subscriber can define his new password.

• [%subscriber%]: username@domain of the subscriber, which password was requested for reset.

10.5 Invoice email template

Template name invoice_default_email

From default@sipwise.com

Subject Invoice #[%invoice.serial%] from [%invoice.period_start_obj.ymd%] to

[%invoice.period_end_obj.ymd%]

124

mailto:username@domain
mailto:default@sipwise.com
mailto:username@domain
mailto:default@sipwise.com

The sip:provider PRO Handbook mr3.8.8 125 / 236

Body

Dear Customer,

Please find your invoice #[%invoice.serial%] for [%invoice. ←↩
period_start_obj.month_name%], [%invoice.period_start_obj.year%] in attachment of this ←↩
letter.

Your faithful Sipwise system

--

This is an automatically generated message. Do not reply.

Variables passed to the email template:

• [%invoice%]: container variable for the invoice information.

Invoice fields

• [%invoice.serial%]

• [%invoice.amount_net%]

• [%invoice.amount_vat%]

• [%invoice.amount_total%]

• [%invoice.period_start_obj%]

• [%invoice.period_end_obj%]

The fields [%invoice.period_start_obj%] and [%invoice.period_end_obj%] provide methods of the perl package DateTime for

the invoice start date and end date. Further information about DateTime can be obtained from the package documentation:

man DateTime

• [%provider%]: container variable for the reseller contact. All database contact values will be available.

• [%client%]: container variable for the customer contact.

125

The sip:provider PRO Handbook mr3.8.8 126 / 236

Contact fields example for the "provider". Replace "provider" to client to access proper "customer" contact fields.

• [%provider.gender%]

• [%provider.firstname%]

• [%provider.lastname%]

• [%provider.comregnum%]

• [%provider.company%]

• [%provider.street%]

• [%provider.postcode%]

• [%provider.city%]

• [%provider.country%]

• [%provider.phonenumber%]

• [%provider.mobilenumber%]

• [%provider.email%]

• [%provider.newsletter%]

• [%provider.faxnumber%]

• [%provider.iban%]

• [%provider.bic%]

• [%provider.vatnum%]

• [%provider.bankname%]

• [%provider.gpp0 - provider.gpp9%]

10.6 Email templates management

Email templates linked to the resellers can be customized in the email templates management interface. For the administrative

account email templates of all the resellers will be shown. Respectively for the reseller account only owned email templates will

be shown.

126

The sip:provider PRO Handbook mr3.8.8 127 / 236

To create create new email template press button "Create Email Template".

On the email template form all fields are mandatory:

• Reseller: reseller who owns this email template.

• Name: currently only email template with the following names will be considered by the sip:provider PRO on the appropriate

event Section 10.1 :

– passreset_default_email;

– subscriber_default_email;

127

The sip:provider PRO Handbook mr3.8.8 128 / 236

– invoice_default_email;

• From Email Address: email address which will be used in the From field in the letter sent by the sip:provider PRO.

• Subject: Template of the email subject. Subject will be processed with the same template variables as the email body.

• Body: Email text template. Will be processed with appropriate template variables.

128

The sip:provider PRO Handbook mr3.8.8 129 / 236

11 Provisioning interfaces

The sip:provider PRO provides two kinds of provisioning interfaces for easy interconnection with 3rd party tools. The one recom-

mended by Sipwise is the REST API, and the other (soon deprecated) one is SOAP and XMLRPC. Any new functionality is only

added to the REST interface, so do not base any new development on SOAP or XMLRPC.

11.1 REST API

The sip:provider PRO provides a REST API to provision various functionality of the platform. The entry point - and at the same

time the official documentation - is at https://<your-ip>:1443/api. It allows both administrators and resellers (in a limited scope) to

manage the system.

You can either authenticate via username and password of your administrative account you’re using to access the admin panel, or

via SSL client certificates. Find out more about client certificate authentication in the online api documentation.

11.2 SOAP and XMLRPC API

Important

SOAP and XMLRPC API are deprecated and disabled by default since mr3.6.1. Please consider using REST API as

SOAP and XMLRPC API will be deleted in upcoming release(s). To enable SOAP and XMLRPC change /etc/ngcp-

config/config.yml by setting ossbss→frontend→fcgi and execute ngcpcfg apply.

The sip:provider PRO provides two (soon deprecated) XML based provisioning interfaces - SOAP and XMLRPC. The server

provides online documentation about all the functions available. To access the online documentation for the first time, you need to

follow the following instructions:

• Generate a password for http access to the provisioning interfaces:

htpasswd -nbs myuser mypassword

Note

Also see man 1 htpasswd on how to generate crypt or MD5 passwords if you like. Of course you may use any other

process to generate crypt, MD5 or SHA hashed passwords. But using htpasswd ensures the hashes are also understood by

Nginx. To install htpasswd please run apt-get install apache2-utils on your system.

• Edit /etc/ngcp-config/config.yml. Under section ossbss→htpasswd, replace user and pass with your new values and execute

ngcpcfg apply as usual.

• Access https://<ip>:2443/SOAP/Provisioning.wsdl and login with your new credentials.

129

https://<your-ip>:1443/api
https://<ip>:2443/SOAP/Provisioning.wsdl

The sip:provider PRO Handbook mr3.8.8 130 / 236

Note

The default port for provisioning interfaces is 2443. You can change it in /etc/ngcp-config/config.yml by modifying oss-

bss→apache→port and execute ngcpcfg apply.

Important

The displayed online API documentation shows all the currently available functionalities. Enabling or disabling features

in /etc/ngcp-config/config.yml will directly reflect in the functions being available via the APIs.

Important

If your SOAP client throws errors because of the inline <documentation> tags (e.g. Visual Studio and the stock PHP

SOAP client complain about this), try to use the WSDL URL https://<ip>:2443/SOAP/Provisioning.wsdl?plain instead,

which supresses the output of these tags.

130

https://<ip>:2443/SOAP/Provisioning.wsdl?plain

The sip:provider PRO Handbook mr3.8.8 131 / 236

12 Configuration Framework

The sip:provider PRO provides a configuration framework for consistent and easy to use low level settings management. A basic

usage of the configuration framework only needs two actions already used in previous chapters:

• Edit /etc/ngcp-config/config.yml file.

• Execute ngcpcfg apply command.

Low level management of the configuration framework might be required by advanced users though. This chapter explains the

architecture and usage of the NGCP configuration framework. If the basic usage explained above fits your needs, feel free to skip

this chapter and return to it when your requirements change.

A more detailed workflow of the configuration framework for creating a configuration file consists of 6 steps:

• Generation or editing of configuration templates and/or configuration values.

• Generation of the configuration files based on configuration templates and configuration values defined in config.yml, con-

stants.yml and network.yml files.

• Execution of prebuild commands if defined for a particular configuration file or configuration directory.

• Placement of the generated configuration file in the target directory. This step is called build in the configuration framework.

• Execution of postbuild commands if defined for that configuration file or configuration directory.

• Execution of services commands if defined for that configuration file or configuration directory. This step is called services in the

configuration framework.

• Saving of the generated changes. This step is called commit in the configuration framework.

12.1 Configuration templates

The sip:provider PRO provides configuration file templates for most of the services it runs. These templates are stored in the

directory /etc/ngcp-config/templates.

Example: Template files for /etc/ngcp-sems/sems.conf are stored in /etc/ngcp-config/templates/etc/ngcp-sems/.

There are different types of files in this template framework, which are described below.

12.1.1 .tt2 and .customtt.tt2 files

These files are the main template files that will be used to generate the final configuration file for the running service. They contain

all the configuration options needed for a running sip:provider PRO system. The configuration framework will combine these files

with the values provided by config.yml, constants.yml and network.yml to generate the appropriate configuration file.

Example: In the installation chapter we’ve changed the public interface from lo to eth0. This parameter will for example change ka-

mailio’s listen address, when the configuration file is generated. A quick look to the template file under /etc/ngcp-config/templates/etc/kamailio/lb/kamailio.cfg.tt2

will show a line like this:

131

The sip:provider PRO Handbook mr3.8.8 132 / 236

listen=udp:[% ip %]:[% kamailio.lb.port %]

After applying the changes with the ngcpcfg apply command, a new configuration file will be created under /etc/kamailio/ka-

mailio.cfg with the proper values taken from the main configuration files (in this case network.yml):

listen=udp:1.2.3.4:5060

All the low-level configuration is provided by these .tt2 template files and the corresponding config.yml file. Anyways, advanced

users might require a more particular configuration.

Instead of editing .tt2 files, the configuration framework recognises .customtt.tt2 files. These files are the same as .tt2, but they

have higher priority when the configuration framework creates the final configuration files. An advanced user should create a

.customtt.tt2 file from a copy of the corresponding .tt2 template and leave the .tt2 template untouched. This way, the user will have

his personalized configuration and the system will continue providing a working, updated configuration template in .tt2 format.

Example: We’ll create /etc/ngcp-config/templates/etc/kamailio.cfg.customtt.tt2 and use it for our personalized configuration. In this

example, we’ll just append a comment at the end of the template.

cd /etc/ngcp-config/templates/etc/kamailio/lb

cp kamailio.cfg.tt2 kamailio.cfg.customtt.tt2

echo ’# This is my last line comment’ >> kamailio.cfg.customtt.tt2

ngcpcfg apply

The ngcpcfg command will generate /etc/kamailio/kamailio.cfg from our custom template instead of the general one.

tail -1 /etc/kamailio/kamailio.cfg

This is my last line comment

Tip

The tt2 files use the Template Toolkit language. Therefore you can use all the feature this excellent toolkit provides within

ngcpcfg’s template files (all the ones with the .tt2 suffix).

12.1.2 .prebuild and .postbuild files

After creating the configuration files, the configuration framework can execute some commands before and after placing that file

in its target directory. These commands usually are used for changing the file’s owner, groups, or any other attributes. There are

some rules these commands need to match:

• They have to be placed in a .prebuild or .postbuild file in the same path as the original .tt2 file.

• The file name must be the same as the configuration file, but having the mentioned suffixes.

• The commands must be bash compatible.

• The commands must return 0 if successful.

132

http://template-toolkit.org/

The sip:provider PRO Handbook mr3.8.8 133 / 236

• The target configuration file is matched by the environment variable output_file.

Example: We need www-data as owner of the configuration file /etc/ngcp-ossbss/provisioning.conf. The configuration framework

will by default create the configuration files with root:root as owner:group and with the same permissions (rwx) as the original

template. For this particular example, we will change the owner of the generated file using the .postbuild mechanism.

echo ’chgrp www-data ${output_file}’ \

> /etc/ngcp-config/templates/etc/ngcp-ossbss/provisioning.conf.postbuild

12.1.3 .services files

.services files are pretty similar and might contain commands that will be executed after the build process. There are two types of

.services files:

• The particular one, with the same name as the configuration file it is associated to.

Example: /etc/ngcp-config/templates/etc/asterisk/sip.conf.services is associated to /etc/asterisk/sip.conf

• The general one, named ngcpcfg.services wich is associated to every file in its target directory.

Example: /etc/ngcp-config/templates/etc/asterisk/ngcpcfg.services is associated to every file under /etc/asterisk/

When the services step is triggered all .services files associated to a changed configuration file will be executed. In case of the

general file, any change to any of the configuration files in the directory will trigger the execution of the commands.

Tip

If the service script has the execute flags set (chmod +x $file) it will be invoked directly. If it doesn’t have execute flags set it will

be invoked under bash. Make sure the script is bash compatible if you do not set execute permissions on the service file.

These commands are usually service reload/restarts to ensure the new configuration has been loaded by running services.

Note

The configuration files mentioned in the following example usually already exist on the platform. Please make sure you don’t

overwrite any existing files if following this example.

Example:

echo ’/etc/init.d/mysql restart’ \

> /etc/ngcpcfg-config/templates/etc/mysql/my.cnf.services

echo ’/etc/init.d/asterisk restart’ \

> /etc/ngcpcfg-config/templates/etc/asterisk/ngcpcfg.services

In this example we created two .services files. Now, each time we trigger a change to /etc/mysql.my.cnf or to /etc/asterisk/* we’ll

see that MySQL or Asterisk services will be restarted by the ngcpcfg system.

133

The sip:provider PRO Handbook mr3.8.8 134 / 236

12.2 config.yml, constants.yml and network.yml files

The /etc/ngcp-config/config.yml file contains all the user-configurable options, using the YAML (YAML Ain’t Markup Language)

syntax.

The /etc/ngcp-config/constants.yml file provides configuration options for the platform that aren’t supposed to be edited by the

user. Do not manually edit this file unless you really know what you’re doing.

The /etc/ngcp-config/network.yml file provides configuration options for all interfaces and IP addresses on those interfaces. You

can use the ngcp-network tool for conveniently change settings without having to manually edit this file.

The /etc/ngcp-config/ngcpcfg.cfg file is the main configuration file for ngcpcfg itself. Do not manually edit this file unless you really

know what you’re doing.

12.3 ngcpcfg and its command line options

The ngcpcfg utility supports the following command line options:

12.3.1 apply

The apply option is a short-cut for the options "build && services && commit" and also executes etckeeper to record any modified

files inside /etc. It is the recommended option to use the ngcpcfg framework unless you want to execute any specific commands

as documented below.

12.3.2 build

The build option generates (and therefore also updates) configuration files based on their configuration (config.yml) and template

files (.tt2). Before the configuration file is generated a present .prebuild will be executed, after generation of the configuration file

the according .postbuild script (if present) will be executed. If a file or directory is specified as argument the build will generate

only the specified configuration file/directory instead of running through all present templates.

Example: to generate only the file /etc/nginx/sites-available/ngcp-panel you can execute:

ngcpcfg build /etc/nginx/sites-available/ngcp-panel

Example: to generate all the files located inside the directory /etc/nginx/ you can execute:

ngcpcfg build /etc/nginx/

12.3.3 commit

The commit option records any changes done to the configuration tree inside /etc/ngcp-config. The commit option should be

executed when you’ve modified anything inside the configuration tree.

134

http://www.yaml.org/

The sip:provider PRO Handbook mr3.8.8 135 / 236

12.3.4 decrypt

Decrypt /etc/ngcp-config-crypted.tgz.gpg and restore configuration files, doing the reverse operation of the encrypt option. Note:

This feature is only available if the ngcp-ngcpcfg-locker package is installed.

12.3.5 diff

Show uncommited changes between ngcpcfg’s Git repository and the working tree inside /etc/ngcp-config. Iff the tool doesn’t

report anything it means that there are no uncommited changes. If the --addremove option is specified then new and removed

files (iff present) that are not yet (un)registered to the repository will be reported, no further diff actions will be executed then. Note:

This option is available since ngcp-ngcpcfg version 0.11.0.

12.3.6 encrypt

Encrypt /etc/ngcp-config and all resulting configuration files with a user defined password and save the result as /etc/ngcp-config-

crypted.tgz.gpg. Note: This feature is only available if the ngcp-ngcpcfg-locker package is installed.

12.3.7 help

The help options displays ngcpcfg’s help screen and then exits without any further actions.

12.3.8 initialise

The initialise option sets up the ngcpcfg framework. This option is automatically executed by the installer for you, so you shouldn’t

have to use this option in normal operations mode.

12.3.9 pull

Retrieve modifications from shared storage. Note: This option is available in the High Availability setup only.

12.3.10 push

Push modifications to shared storage and remote systems. After changes have been pushed to the nodes the build option will be

executed on each remote system to rebuild the configuration files (unless the --nobuild has been specified, then the build step will

be skipped). If hostname(s) or IP address(es) is given as argument then the changes will be pushed to the shared storage and to

the given hosts only. If no host has been specified then the hosts specified in /etc/ngcp-config/systems.cfg are used. Note: This

option is available in the High Availability setup only.

12.3.11 services

The services option executes the service handlers for any modified configuration file(s)/directory.

135

The sip:provider PRO Handbook mr3.8.8 136 / 236

12.3.12 status

The status option provides a human readable interface to check the state of the configuration tree. If you are unsure what should

be done as next step or if want to check the current state of the configuration tree just invoke ngcpcfg status.

If everything is OK and nothing needs to be done the output should look like:

ngcpcfg status

Checking state of ngcpcfg:

OK: has been initialised already (without shared storage)

Checking state of configuration files:

OK: nothing to commit.

Checking state of /etc files

OK: nothing to commit.

If the output doesn’t say "OK" just follow the instructions provided by the output of ngcpcfg status.

Further details regarding the ngcpcfg tool are available through man ngcpcfg on the Sipwise Next Generation Platform.

136

The sip:provider PRO Handbook mr3.8.8 137 / 236

13 Network Configuration

Starting with version 2.7, the sip:provider PRO uses a dedicated network.yml file to configure the IP addresses of the system.

The reason for this is to be able to access all IPs of all nodes for all services from any particular node in case of a distributed

system on one hand, and in order to be able the generate /etc/network/interfaces automatically for all nodes based on this central

configuration file.

13.1 General Structure

The basic structure of the file looks like this:

hosts:

self:

role:

- proxy

- lb

- mgmt

interfaces:

- eth0

- lo

eth0:

ip: 192.168.51.213

netmask: 255.255.255.0

type:

- sip_ext

- rtp_ext

- web_ext

- web_int

lo:

ip: 127.0.0.1

netmask: 255.255.255.0

type:

- sip_int

- ha_int

In PRO and Carrier deployments, all hosts of the system are defined, and the names are the actual host names instead of self,

like this:

hosts:

sp1:

peer: sp2

role: ...

interfaces: ...

sp2:

peer: sp1

137

The sip:provider PRO Handbook mr3.8.8 138 / 236

role: ...

interfaces: ...

13.2 Available Host Options

There are three different main sections for a host in the config file, which are role, interfaces and the actual interface definitions.

In PRO deployments, there is also a peer setting pointing to the second node of the pair.

• role: The role setting is an array defining which logical roles a node will act as. Possible entries for this setting are:

– mgmt : This entry means the host is acting as management node for the platform. In a sip:provider PRO, this option must

always been set. The management node exposes the admin and csc panels to the users and the APIs to external applications

and is used to export CDRs.

– lb: This entry means the host is acting as SIP load-balancer for the platform. In a sip:provider PRO, this option must always

been set. The SIP load-balancer acts as an ingress and egress point for all SIP traffic to and from the platform.

– proxy : This entry means the host is acting as SIP proxy for the platform. In a sip:provider PRO, this option must always

been set. The SIP proxy acts as registrar, proxy and application server and media relay, and is responsible for providing the

features for all subscribers provisioned on it.

• peer : The peer setting points to the second node of the pair within the overall system. For example in sp1 the peer will always

contain sp2 and vice versa in order for each node to know its companion node for providing high availability, data replication etc.

• interfaces: The interfaces setting is an array defining all interface names in the system. The actual interface details are set in

the actual interface settings below.

• <interface name>: After the interfaces are defined in the interfaces setting, each of those interfaces needs to be specified as a

separate setting with the following options:

– ip

– netmask

– shared_ip

– shared_v6ip

– advertised_ip

– type

There are different interface types, which define the services on a particular interface. For example the type ssh_ext set for a

specific interface defines that the SSH daemon will listen on that interface for incoming connections. The list of possible types is

as follows (note that you can assign a type only once per node):

• ha_int : interface for HA communications between nodes sp1 and sp2 (for heartbeat checks, DB replication etc.)

• mon_ext : interface for monitoring purposes, e.g. for snmpd

• rtp_ext : interface for external RTP relay

138

The sip:provider PRO Handbook mr3.8.8 139 / 236

• sip_ext : interface for external SIP communication between the sip:provider PRO and the end points

• sip_ext_incoming: extra listen interface for external SIP traffic (optional)

• sip_int : interface for internal SIP communication, e.g. between load-balancer, proxy and application servers

• ssh_ext : interface for SSH remote login

• web_ext : interface for the subscriber web panel and the subscriber’s SOAP/REST APIs

• web_int : interface for the administrator web panel, his SOAP/REST APIs and internal API communication

• aux_ext : interface for potentially insecure external components like rsyslogd service; e.g. the CloudPBX module can use those

services to provide time services and remote logging facilities to end customer devices. The type aux_ext is assigned to lo

interface by default. If it is needed to expose this type to the public, it is recommended to assign the type aux_ext to a separate

VLAN interface to be able to limit or even block the incoming traffic easily via firewalling in case of emergency, like a (D)DOS

attack on rsyslog services.

14 Advanced Network Configuration

You have a typical deployment now and you are good to go, however you may need to do extra configuration depending on the

devices you are using and functionality you want to achieve.

14.1 Extra SIP Sockets

By default, the load-balancer listens on the UDP and TCP ports 5060 (kamailio→lb→port) and TLS port 5061 (kamailio→lb→tls→port).

If you need to setup one or more extra SIP listening ports or IP addresses in addition to those standard ports, please edit the

kamailio→lb→extra_sockets option in your /etc/ngcp-config/config.yml file.

The correct format consists of a label and value like this:

extra_sockets:

port_5064: udp:10.15.20.108:5064

test: udp:10.15.20.108:6060

The label is shown in the outbound_socket peer preference (if you want to route calls to the specific peer out via specific

socket); the value must contain a transport specification as in example above (udp, tcp or tls). After adding execute ngcpcfg

apply:

ngcpcfg apply ’added extra socket’ && ngcpcfg push

The direction of communication through this SIP extra socket is incoming+outgoing. The sip:provider PRO will answer the incoming

client registrations and other methods sent to the extra socket. For such incoming communication no configuration is needed. For

the outgoing communication the new socket must be selected in the outbound_socket peer preference. For more details

read until the end of next chapter Section 14.2 that covers peer configuration for SIP and RTP in greater detail.

139

The sip:provider PRO Handbook mr3.8.8 140 / 236

Important

In this section you have just added an extra SIP socket. RTP traffic will still use your rtp_ext IP address.

14.2 Extra SIP and RTP Sockets

If you want to use an additional interface (with a different IP address) for SIP signalling and RTP traffic you need to add your new

interface in the /etc/network/interfaces file. Also the interface must be declared in /etc/ngcp-config/network.yml.

Suppose we need to add a new SIP socket and a new RTP socket on VLAN 100. You can use the ngcp-network tool for adding

interfaces without having to manually edit this file:

ngcp-network --set-interface=eth0.100 --host=sp1 --ip=auto --netmask=auto --type= ←↩
sip_ext_incoming --type=rtp_int_100

ngcp-network --set-interface=eth0.100 --host=sp2 --ip=auto --netmask=auto --type= ←↩
sip_ext_incoming --type=rtp_int_100

The generated file should look like the following:

sp1:

..

..

eth0.100:

hwaddr: ff:ff:ff:ff:ff:ff

ip: 192.168.1.2

netmask: 255.255.255.0

shared_ip:

- 192.168.1.3

shared_v6ip: ~

type:

- sip_ext_incoming

- rtp_int_100

..

..

interfaces:

- lo

- eth0

- eth0.100

- eth1

..

..

sp2:

..

..

eth0.100:

hwaddr: ff:ff:ff:ff:ff:ff

140

The sip:provider PRO Handbook mr3.8.8 141 / 236

ip: 192.168.1.4

netmask: 255.255.255.0

shared_ip:

- 192.168.1.3

shared_v6ip: ~

type:

- sip_ext_incoming

- rtp_int_100

..

..

interfaces:

- lo

- eth0

- eth0.100

- eth1

As you can see from the above example, extra SIP interfaces must have type sip_ext_incoming. While sip_ext should be listed

only once per host, there can be multiple sip_ext_incoming interfaces. The direction of communication through this SIP interface

is incoming only. The sip:provider PRO will answer the incoming client registrations and other methods sent to this address and

remember the interfaces used for clients’ registrations to be able to send incoming calls to him from the same interface.

In order to use the interface for the outbound SIP communication it is necessary to add it to extra_sockets section in /etc/ngcp-

config/config.yml and select in the outbound_socket peer preference. So if using the above example we want to use the

vlan100 IP as source interface towards a peer, the corresponding section may look like the following:

extra_sockets:

port_5064: udp:10.15.20.108:5064

test: udp:10.15.20.108:6060

int_100: udp:192.168.1.3:5060

The changes have to be applied:

ngcpcfg apply ’added extra SIP and RTP socket’ && ngcpcfg push

After applying the changes, a new SIP socket will listen on IP 192.168.1.3 and this socket can now be used as source socket

to send SIP messages to your peer for example. In above example we used label int_100. So the new label "int_100" is now

shown in the outbound_socket peer preference.

Also, RTP socket is now listening on 192.168.1.3 and you can choose the new RTP socket to use by setting parameter

rtp_interface to the Label "int_100" in your Domain/Subscriber/Peer preferences.

141

The sip:provider PRO Handbook mr3.8.8 142 / 236

15 Security and Maintenance

Once the sip:provider PRO is in production, security and maintenance becomes really important. In this chapter, we’ll go through

a set of best practices for any production system.

15.1 Sipwise SSH access to sip:provider PRO

The sip:provider PRO provides SSH access to the system for Sipwise operational team for debugging and final tuning. Operational

team uses user sipwise which can be logged in through SSH key only (password access is disabled) from dedicated access server

jump.sipwise.com only.

To completely remove Sipwise access to your system, please execute as user root:

root@myserver:~# ngcp-support-access --disable && apt-get install ngcp-support-noaccess

Note

you have to execute the command above on each node of your sip:provider PRO system!

Warning

please ensure that the script complete successfully:

* Support access successfully disabled.

If you need to restore Sipwise access to the system, please execute as user root:

root@myserver:~# apt-get install ngcp-support-access && ngcp-support-access --enable

Warning

please ensure that the script complete successfully:

* Support access successfully enabled.

15.2 Firewalling

The sip:provider PRO runs a wide range of services. Some of them need to interact with the user, while some others need to

interact with the administrator or with nobody at all. Assuming that we trust the sip:provider PRO server for outgoing connections,

we’ll focus only on incoming traffic to define the services that need to be open for interaction.

142

The sip:provider PRO Handbook mr3.8.8 143 / 236

Table 7: Subscribers

Service Default port Config option

Customer self care interface 443 TCP www_admin→http_csc→port

SIP 5060 UDP,

TCP

kamailio→lb→port

SIP over TLS 5061 TCP kamailio→lb→tls→port + kamailio→lb→tls→enable (Disabled by

default)

RTP 30000-40000

UDP

rtpproxy→minport + rtpproxy→maxport

XCAP 1080 TCP kamailio→proxy→presence→enable + nginx→xcap_port (Disabled by

default)

XMPP 5222 and

5269 TCP

None, standard XMPP ports for clients (5222) and federation (5269)

Table 8: Administrators

Service Default port Config option

SSH/SFTP 22 TCP NA

Administrator interface 1443 TCP www_admin→http_admin→port

Provisioning interfaces 2443 TCP ossbss→apache→port

Caution

To function correctly, the rtpengine requires an additional iptables rule installed. This rule (with a target of RTPENGINE)

is automatically installed and removed when the rtpengine starts and stops, so normally you don’t need to worry about

it. However, any 3rd party firewall solution can potentially flush out all existing iptables rules before installing its own,

which would leave the system without the required RTPENGINE rule and this would lead to decreased performance.

It is imperative that any 3rd party firewall solution either leaves this rule untouched, or installs it back into place after

flushing all rules out. The complete parameters to install this rule (which needs to go into the INPUT chain of the

filter table) are: -p udp -j RTPENGINE --id 0

15.3 Password management

The sip:provider PRO comes with some default passwords the user should change during the deployment of the system. They

have been explained in the previous chapters of this document.

• The login for the system account cdrexport is disabled by default. Although this is a jailed account, it has access to sensitive

information, namely the Call Detail Records of all calls. SSH keys should be used to login this user, or alternatively a really

143

The sip:provider PRO Handbook mr3.8.8 144 / 236

strong password should be used when setting the password via passwd cdrexport.

• The root user in MySQL has no default password. A password should be set using the mysqladmin password command.

• The administrative web interface has a default user administrator with password administrator. It should be changed within this

interface.

• Generate new password for user ngcpsoap to access the provisioning interfaces, see the details in Section 11.

Important

Many NGCP services use MySQL backend. Users and passwords for these services are created during the installation.

These passwords are unique for each installation, and the connections are restricted to localhost. You should not

change these users and passwords.

15.4 SSL certificates.

The sip:provider PRO provides default, self-signed SSL certificates for SSL connections. These certificates are common for every

installation. Before going to production state, the system administrator should provide SSL certificates for the web services. These

certificates can either be shared by all web interfaces (provisioning, administrator interface and customer self care interface), or

separate ones for each them can be used.

• Generate the certificates. The customer self care interface certificate should be signed by a certification authority to avoid

browser warnings.

• Upload the certificates to the system

• Set the path to the new certificates in /etc/ngcp-config/config.yml :

– ossbss→apache→autoprov→sslcertfile and ossbss→apache→autoprov→sslcertkeyfile for the provisioning interface.

– ossbss→apache→restapi→sslcertfile and ossbss→apache→restapi→sslcertkeyfile for the REST interface.

– www_admin→http_admin→sslcertfile and www_admin→http_admin→sslcertkeyfile for the admin interface.

– www_admin→http_csc→sslcertfile and www_csc→http_csc→sslcertkeyfile for the customer self care interface.

• Apply the configuration changes with ngcpcfg apply.

The sip:provider PRO also provides the self-signed SSL certificates for SIP over TLS services. The system administrator should

replace them with certificates signed by a trusted certificate authority if he is going to enable it for the production usage (ka-

mailio→lb→tls→enable (disabled by default)).

• Generate the certificates.

• Upload the certificates to the system

• Set the path to the new certificates in /etc/ngcp-config/config.yml :

– kamailio→lb→tls→sslcertfile and kamailio→lb→tls→sslcertkeyfile .

• Apply the configuration changes with ngcpcfg apply.

144

The sip:provider PRO Handbook mr3.8.8 145 / 236

15.5 sip:provider PRO Backup

For any service provider it is important to maintain a reliable backup policy as it enables prompt services restoration after any force

majeure event. Although the design of sip:provider PRO implies data duplication and high availability of services, we still strongly

suggest you to configure a backup procedure. The sip:provider PRO has a built-in solution that can help you back up the most

crucial data. Alternatively, it can be integrated with any Debian compatible backup software.

15.5.1 What data to back up

• The database

This is the most important data in the system. All subscriber and billing information, CDRs, user preferences, etc. are stored in

the MySQL server. It is strongly recommended to have up-to-date dumps of all the databases on corresponding NGCP nodes.

• System configuration

The system configuration files such as /etc/mysql/sipwise.cnf and the /etc/ngcp-config/ directory should be included in the backup

as well. We suggest backing up the whole /etc folder.

• Exported CDRs (optional)

The /home/jail/home/cdrexport directory contains the exported CDRs. It depends on your call data retention policy whether or not

to remove these files after exporting them to an external system.

15.5.2 The built-in backup solution

The sip:provider PRO comes with an easy-to-use solution that creates everyday backups of the most important data:

• The system configuration files. The whole /etc directory is backed up.

• Exported CDRs. The /home/jail/home/cdrexport directory with csv files.

• All required databases on corresponding servers.

This functionality is disabled by default and can be enabled and configured in the backuptools subsection in the config.yml file.

Please, refer to the NGCP configuration overview - backuptools Section C.1.2 section for the backup configuration options.

Once you set the required configuration options, apply the changes:

ngcpcfg apply ’enabled the backup feature’

ngcpcfg push

Once you activate the feature, the sip:provider PRO will create backups in the off-peak time on the standby nodes and put them

to the /var/backup/ngcp_backup directory. You can copy these files to your backup server using scp or ftp.

145

The sip:provider PRO Handbook mr3.8.8 146 / 236

Note

make sure that you have enough free disk space to store the backups for the specified number of days.

15.6 Recovery

In the worst case scenario, when the system needs to be recovered from a total loss, you only need 4 steps to get the services

back online:

• Install the sip:provider PRO as explained in chapter 2.

• Restore the /etc/ngcp-config/ directory and the /etc/mysql/sipwise.cnf file from the backup, overwriting your local files.

• Restore the database from the latest MySQL dump.

• Apply the changes to bring the original configuration into effect:

ngcpcfg apply ’restored the system from the backup’

ngcpcfg push

15.7 Reset Database

Important

All existing data will be wiped out! Use this script only if you want to clear all previously configured services and start

configuration from scratch.

To reset database to its original state you can execute a script: ngcp-reset-db. It will assign new unique passwords for the

NGCP services and reset all services. The script will also create dumps for all NGCP databases.

15.8 Synchronize database

In case of unresolvable database replication issues or to copy mysql data between a pair of hosts (usually a pair of sp1 and sp2

nodes).

There is a script for that: ngcp-sync-db.

To synchronize databases you need to run the script on your target host.

• Definitions:

– master - remote/master host (the database is dumped from there)

– local - target/local host (the database is imported onto)

146

The sip:provider PRO Handbook mr3.8.8 147 / 236

• Usage:

Important

Your existing database on local will be completely wiped. The script provides a possibility to backup both master and

local databases during the procedure.

You can run the script with -h or --help to check its options or use man ngcp-sync_db

If you run it without any options it automatically calculates master hostname (e.g. if you run it on sp2 then sp2==local and

sp1==master).

The script also requires mysql credentials and if none provided it uses username=sipwise and the password is picked from

/etc/mysql/sipwise.cnf. You can specify user and/or password for both master and local.

Before the actual start it produces a summary with settings used to the procedure and a confirmation prompt to prevent accidental

usage. Making use of --force option" however suppresses the confirmation prompt. By default no messages are printed on

STDOUT (compliant to be integrated into another tools) and with -v or --verbose options you enable debugging where all the

ongoing steps will be printed to STDOUT.

There are 2 modes available for synchronization, online and backup. By default online is used where the procedure does not

create any backups and everything goes on the fly. That is useful for large databases where creating backups would require

solid amounts of available free disk space. With the backup mode master db is dumped into a backup file on local first (default

directory: /var/backup/ngcp-sync-db) and imported upon the backup completion.

Mysql database connection to the master db and the local db is the essential part and by default the script tries to establish

direct mysql connection however that may not be possible due to the access restrictions. To overcome that you can use --ssh-

tunnel option and specifying there a local custom free port (e.g. --ssh-tunnel=33125) in this case an ssh tunnel will be

created to master and used to establish the db connection on the localhost behalf (NOTE: Public key based ssh negotiation is

required for the tunnel as the script does not suppot ssh credentials for security reasons).

Backups may be a subject to create during synchornization for possible rollbacks. To create the local db backup you should add -

-local-backup. The master db backup is automatically created only using --sync-mode=backup. Upon completion all

those created backups are deleted and if you need to keep them please use --keep-backups option (NOTE: In case of errors

during synchronization and when backups are created they are NOT automatically deleted. Therefore, if the script had failed with

an error and afterwards completed successully you may want to manually remove the remaining backups from /var/backup/ngcp-

sync-db).

• Examples:

Normal online mode synchronization sp1→ sp2.

sp2> ngcp-sync-db

Normal backup mode synchronization sp1→ sp2.

sp2> ngcp-sync-db --sync-mode=backup

147

The sip:provider PRO Handbook mr3.8.8 148 / 236

Forced online mode synchronization sp1→ sp2. USE WITH CARE as there will be no confirmation prompts.

sp2> ngcp-sync-db --force

Direct mysql db access is not possible. SSH tunnel is initialised to local port 33125 and forwards all connections 127.0.0.1:33125

→ sp1:3306.

sp2> ngcp-sync-db --ssh-tunnel=33125

Custom mysql credentials for the master db connection (by default: sipwise:/etc/mysql/sipwise.cnf)

sp2> ngcp-sync-db --master-user=frank --master-pass=dbconnect

Normal online mode synchronization sp1 → sp2 with the local db backup and retaining the backup. (no master backup in this

case as it is only available with --sync-mode=backup).

sp2> ngcp-sync-db --local-backup --keep-backups

Normal online mode synchronization custom-node→ sp2 with ssh tunnel

sp2> ngcp-sync-db --master-host=custom-node --ssh-tunnel=45001

Forced syncrhonization custom-node → sp2 with ssh tunnel, backup sync mode, local backup, custom master and local db

credentials and ports as well as a different backup dir

sp2> ngcp-sync-db --force --sync-mode=backup --master-host=custom-node --master-port=3308 ←↩
--ssh-tunnel=45001 --master-user=frank --master-pass=dbconnect --local-user=john --local ←↩
-pass=dblocal --local-backup --keep-backups --backup-dir=/home/barry/backups

15.9 System requirements and performance

The sip:provider PRO is a very flexible system, capable of serving from hundreds to several tens of thousands of subscribers

in a single node. The system comes with a default configuration, capable of serving up to 50.000 subscribers in a normal

environment. But there is no such thing as a normal environment. And the sip:provider PRO has sometimes to be tunned for

special environments, special hardware requirements or just growing traffic.

Note

If you have performance issues with regards to disk I/O please consider enabling the noatime mount option for the root filesys-

tem. Sipwise recommends the usage of noatime, though remove it if you use software which conflicts with its presence.

In this section some parameters will be explained to allow the sip:provider PRO administrator tune the system requirements for

optimum performance.

148

The sip:provider PRO Handbook mr3.8.8 149 / 236

Table 9: Requirement_options

Option Default value Requirement impact

cleanuptools→binlog_days 15 Heavy impact on the harddisk storage needed for mysql logs. It can help

to restore the database from backups or restore broken replication.

database→bufferpoolsize 1/2 * Total

system RAM

The installer will calculate the total system RAM and dedicate 50% to the

mysql innodb buffer. This value won’t be changed in case the system

RAM changes so it’s up to the administrator to adjust it. For test systems

or low RAM systems, lowering this setting is one of the most effective

ways of releasing RAM. The administrator can check the innodb buffer hit

rate on production systems; a hit rate over 99% is desired to avoid

bottlenecks.

kamailio→lb→pkg_mem 16 This setting affects the amount of RAM the system will use. Each

kamailio-lb worker will have this amount of RAM reserved. Lowering this

setting up to 8 will help to release some memory depending on the

number of kamailio-lb workers running. This can be a dangerous setting

as the lb process could run out of memory. Use with caution.

kamailio→lb→shm_mem 1/16 * Total

System RAM

The installer will set this value to 1/16 of the total system RAM. This

setting does not change even if the system RAM does so it’s up to the

administrator to tune it. It has been calculated that 1024 (1GB) is a good

value for 50K subscriber environment. For a test environment, setting the

value to 64 should be enough. "Out of memory" messages in the

kamailio log can indicate that this value needs to be raised.

kamailio→lb→tcp_children 8 Number of TCP workers kamailio-lb will spawn per listening socket. The

value should be fine for a mixed UDP-TCP 50K subscriber system.

Lowering this setting can free some RAM as the number of kamailio

processess would decrease. For a test system or a pure UDP subscriber

system 2 is a good value. 1 or 2 TCP workers are always needed.

kamailio→lb→tls→enable yes Enable or not TLS signaling on the system. Setting this value to "no" will

prevent kamailio to spawn TLS listening workers and free some RAM.

kamailio→lb→udp_children 8 See kamailio→lb→tcp_children explanation

kamailio→proxy→children 8 See kamailio→lb→tcp_children explanation. In this case the proxy only

listens udp so these children should be enough to handle all the traffic. It

could be set to 2 for test systems to lower the requirements.

kamailio→proxy→*_expires Set the default and the max and min registration interval. The lower it is

more REGISTER requests will be handled by the lb and the proxy. It can

impact in the network traffic, RAM and CPU usage.

kamailio→proxy→natping_interval 30 Interval for the proxy to send a NAT keepalive OPTIONS message to the

nated subscriber. If decreased, this setting will increase the number of

OPTIONS requests the proxy needs to send and can impact in the

network traffic and the number of natping processes the system needs to

run. See kamailio→proxy→natping_processes explanation.

149

The sip:provider PRO Handbook mr3.8.8 150 / 236

Table 9: (continued)

Option Default value Requirement impact

kamailio→proxy→natping_processes 7 Kamailio-proxy will spawn this number of processes to send keepalive

OPTIONS to the nated subscribers. Each worker can handle about 250

messages/second (depends on the hardware). Depending the number of

nated subscribers and the kamailio→proxy→natping_interval parameter

the number of workers may need to be adjusted. The number can be

calculated like

nated_subscribers/natping_interval/pings_per_second_per_process. For

the default options, asuming 50K nated subscribers in the system the

parameter value would be 50.000/30/250 = (6,66) 7 workers. 7 is the

maximum number of processes kamailio will accept. Raising this value

will cause kamailio not to start.

kamailio→proxy→shm_mem 1/16 * Total

System RAM

See kamailio→lb→shm_mem explanation.

rateomat→enable yes Set this to no if the system shouldn’t perform rating on the CDRs. This

will save CPU usage.

rsyslog→external_log 0 If enabled, the system will send the log messages to an external server.

Depending on the rsyslog→external_loglevel parameter this can

increase dramatically the network traffic.

rsyslog→ngcp_logs_preserve_days 93 This setting will set the number of days ngcp logs under /var/log/ngcp will

be kept in disk. Lowering this setting will free a high amount of disk

space.

Tip

In case of using virtualized environment with limited amount of hardware resources, you can use the script ngcp-toggle-

performance-config to adjust sip:provider PRO configuration for high/low performance:

root@spce:~# /usr/sbin/ngcp-toggle-performance-config

/usr/sbin/ngcp-toggle-performance-config - tool to adjust sip:provider configuration for ←↩
low/high performance

--help Display this usage information

--high-performance Adjust configuration for system with normal/high performance

--low-performance Adjust configuration for system with low performance (e.g. VMs)

root@spce:~#

150

The sip:provider PRO Handbook mr3.8.8 151 / 236

15.10 Troubleshooting

The sip:provider PRO platform provides detailed logging and log files for each component included in the system via rsyslog. The

main folder for log files is /var/log/ngcp/, it contains a list of self explanatory log files named by component name.

The sip:provider PRO is a high performance system which requires compromise between traceability (maximum amount of debug

information being written to hard drive) and productivity (minimum load on IO subsystem). This is the reason why different log

levels are configured for the provided components by default.

Most log files are designed for debugging sip:provider PRO by Sipwise operational team while main log files for daily routine usage

are:

Log file Content Estimated size

/var/log/ngcp/api.log API logs

providing type

and content of

API requests

and

responses as

well as

potential

errors

medium

/var/log/ngcp/panel.log Admin Web UI

logs when

performing

operational

tasks on the

ngcp-panel

medium

/var/log/ngcp/cdr.log mediation and

rating logs,

e.g. how

many CDRs

have been

generated

and potential

errors in case

of CDR

generation or

rating fails for

particular

accounting

data

medium

151

The sip:provider PRO Handbook mr3.8.8 152 / 236

Log file Content Estimated size

/var/log/ngcp/ha.log fail-over

related logs in

case a node

in a pair loses

connection to

the other side,

when a

standby node

takes over or

an active

node goes

standby due

to intra-node

communica-

tion issues or

external ping

node

connection

issues

small

/var/log/ngcp/kamailio-lb.log Overview of

SIP requests

and replies

along with

network

source and

destination

information

flowing

through the

platform

huge

Warning

it is highly NOT recommended to change default log levels as it can cause system IO overloading which will affect call

processing.

Note

the exact size of log files depend on system type, system load, system health status and system configuration, so cannot be

estimated with high precision. Additionally operational network parameters like ASR and ALOC may impact the log files’ size

significantly.

152

The sip:provider PRO Handbook mr3.8.8 153 / 236

16 Monitoring and Alerting

16.1 Internal Monitoring

The platform uses the monit daemon internally to monitor all essential services. Since the sip:provider PRO runs in an active/s-

tandby mode, not all services are always running on both nodes, some of them will only run on the active node and be stopped on

the standby node. At any time, you can use the command monit summary to get a list of all services and their current status,

or monit status for the same list with more detail.

Important

sip:provider PRO has a monit services dependencies since mr3.5.1. Services specified in a depend statement will be

checked during stop/start/monitor/unmonitor operations. If a service is stopped or unmonitored it will stop/unmonitor

any services that depends on itself. Which means that kamailio/sbc/asterisk/prosody/. . . will be stopped on monit

stop mysql operation.

The monit daemon takes care of quickly restarting a service should it ever fail for whatever reason. When that happens, the

deamon will send a notification email to the address specified in the config.yml file under the key general.adminmail.

It will also send warning emails to this address under certain abnormal conditions, such as when the system is low on memory (>

75% used) or under high-load conditions.

Important

In order for monit to be able to send email to the specified address, the local MTA (exim4) must be configured correctly.

If you haven’t done so already, run dpkg-reconfigure exim4-config to do this. The CE edition’s handbook

contains more information about this in the Installation chapter.

16.2 Statistics Dashboard

The platform’s administration interface (described in Section 5) provides a simple graphical overview of the most important system

health data points, such as memory usage, load averages and disk usage, as well as statistics about the VoIP system itself, such

as the number of concurrent active calls, number of provisioned and registered subscribers, etc.

16.3 External Monitoring Using SNMP

16.3.1 Overview and Initial Setup

The sip:provider PRO exports a variety of system health data and statistics over standard SNMP. By default, the SNMP interface

can only be accessed locally. To make it possible to poll the SNMP data from an external system, the config.yml file needs

to be edited and the list of allowed community names and allowed hosts/IP ranges must be populated. This list can be found

under the checktools.snmpd.communities key and consists of one or more community/source value pairs. The

community is the SNMP community string to be allowed, while source is the IP address or IP block to allow this community

153

The sip:provider PRO Handbook mr3.8.8 154 / 236

from. A source of default equals the IP address 127.0.0.1. Other legal values are single IP addresses or IP blocks

in IP/prefix notation, for example 192.168.115.0/24. It is recommended that you leave the default entry (public and

default) in place for local testing of SNMP functionality.

Tip

To locally check if SNMP is working correctly, execute the command snmpwalk -v2c -cpublic localhost . (note

the trailing dot), assuming the default SNMP community entry has been left in place. This will generate a long list of raw SNMP

OIDs and their values.

Tip

SNMP version 1 and version 2c are supported.

16.3.2 Details

All basic system health variables (such as memory, disk, swap, CPU usage, network statistics, process lists, etc) can be found in

standard OID slots from standard MIBs. For example, memory statistics can be found through the UCD-SNMP-MIB in OIDs such

as memTotalSwap.0, memAvailSwap.0, memTotalReal.0, memAvailReal.0+, etc., which translate

to numeric OIDs .1.3.6.1.4.1.2021.4.*.In fact, UCD-SNMP-MIB++ is the most useful MIB for overall system health

checks.

Additionally, there’s a list of specially monitored processes, also found through the UCD-SNMP-MIB. UCD-SNMP-MIB::prNa

mes

(.1.3.6.1.4.1.2021.2.1.2) gives the list of monitored processes, prCount (.1.3.6.1.4.1.2021.2.1.5) is how

many of each process are running and prErrorFlag (.1.3.6.1.4.1.2021.2.1.100) gives a 0/1 error indication (with

prErrMessage (.1.3.6.1.4.1.2021.2.1.101) providing an explanation of any error).

Tip

Some of these processes are not supposed to be running on the standby node, so you’ll see the error flag raised there. A

possible solution is to run these SNMP checks against the shared service IP of the cluster. See in Section 2.2 below for more

information. Furthermore, UCD-SNMP-MIB provides a list of custom, external checks. The names of these can be found

under the

UCD-SNMP-MIB::extNames (.2) tree, with extOutput (.101) providing the output (one line) from each check and

extResult (.100) the exit code from each check.

The first of these external checks called collective_check provides a combined and overall system health status indicator.

It gathers information from both nodes and returns 0 in extResult.1 (.100.1) if everything is OK and running as it should. If

it finds a problem somewhere, but with the system still operational (e.g. a service is stopped on the inactive node), extResult.

1 will return 1 and extOutput.1 will be set to a string that can be used to diagnose the problem. In case the system is found

in a critical and non-operational state, extResult.1 will return 2, again with an error message set. If you want to keep it really

simple, you can just monitor this one OID and raise an alarm if it ever goes to non-zero.

154

The sip:provider PRO Handbook mr3.8.8 155 / 236

Tip

The 0/1/2 status codes allow for easy integration with Nagios.

The remaining external checks simply return statistics about the system, they all return a number in extOutput and have

extResult always set to zero.

The full list of such checks is below. All of these checks exist in three flavors: the first returns the statistics from sp1 (the first

node in the sip:provider PRO pair), the second from sp2, and the third from whichever node is being queried (which is useful

when querying the shared service IP). For example, the local SIP response time from sp1 is in sip_check_sp1, from sp2 is

in sip_check_sp2 and from the host itself in sip_check_self.

The base OID of the Result and Output OID is always .1.3.6.1.4.1.2021.8.1, so if you read .100.1, the full OID is .

1.3.6.1.4.1.2021.8.1.100.1.

Name in MIB Result OID Output OID Name Description

UCD-SNMP-

MIB::extNames.1

.100.1 .101.1 collective_check Summarized platform

check

UCD-SNMP-

MIB::extNames.2

.100.2 .101.2 sip_check_sp1 SIP response time in

seconds on sp1

UCD-SNMP-

MIB::extNames.3

.100.3 .101.3 sip_check_sp2 SIP response time in

seconds on sp2

UCD-SNMP-

MIB::extNames.4

.100.4 .101.4 mysql_check_sp1 Average number of

MySQL queries per

second on sp1

UCD-SNMP-

MIB::extNames.5

.100.5 .101.5 mysql_check_sp2 Average number of

MySQL queries per

second on sp2

UCD-SNMP-

MIB::extNames.6

.100.6 .101.6 mysql_replication_check_sp1MySQL replication

delay in seconds on

sp1

UCD-SNMP-

MIB::extNames.7

.100.7 .101.7 mysql_replication_check_sp2MySQL replication

delay in seconds on

sp2

UCD-SNMP-

MIB::extNames.8

.100.8 .101.8 mpt_check_sp1 RAID status on sp1

UCD-SNMP-

MIB::extNames.9

.100.9 .101.9 mpt_check_sp2 RAID status on sp2

UCD-SNMP-

MIB::extNames.10

.100.10 .101.10 exim_queue_check_sp1 Number of mails

undelivered in MTA

queue on sp1

UCD-SNMP-

MIB::extNames.11

.100.11 .101.11 exim_queue_check_sp2 Number of mails

undelivered in MTA

queue on sp2

155

The sip:provider PRO Handbook mr3.8.8 156 / 236

Name in MIB Result OID Output OID Name Description

UCD-SNMP-

MIB::extNames.12

.100.12 .101.12 provisioned_subscribers_check_sp1Number of

subscribers

provisioned on sp1

UCD-SNMP-

MIB::extNames.13

.100.13 .101.13 provisioned_subscribers_check_sp2Number of

subscribers

provisioned on sp2

UCD-SNMP-

MIB::extNames.14

.100.14 .101.14 kam_dialog_active_check_sp1Number of active

calls on sp1

UCD-SNMP-

MIB::extNames.15

.100.15 .101.15 kam_dialog_active_check_sp2Number of active

calls on sp2

UCD-SNMP-

MIB::extNames.16

.100.16 .101.16 kam_dialog_early_check_sp1Number of calls in

Early Media state on

sp1

UCD-SNMP-

MIB::extNames.17

.100.17 .101.17 kam_dialog_early_check_sp2Number of calls in

Early Media state on

sp2

UCD-SNMP-

MIB::extNames.18

.100.18 .101.18 kam_dialog_type_local_check_sp1Number of active

calls local on sp1

UCD-SNMP-

MIB::extNames.19

.100.19 .101.19 kam_dialog_type_local_check_sp2Number of active

calls local on sp2

UCD-SNMP-

MIB::extNames.20

.100.20 .101.20 kam_dialog_type_relay_check_sp1Number of active

calls routed via peers

on sp1

UCD-SNMP-

MIB::extNames.21

.100.21 .101.21 kam_dialog_type_relay_check_sp2Number of active

calls routed via peers

on sp2

UCD-SNMP-

MIB::extNames.22

.100.22 .101.22 kam_dialog_type_incoming_check_sp1Number of incoming

calls on sp1

UCD-SNMP-

MIB::extNames.23

.100.23 .101.23 kam_dialog_type_incoming_check_sp2Number of incoming

calls on sp2

UCD-SNMP-

MIB::extNames.24

.100.24 .101.24 kam_dialog_type_outgoing_check_sp1Number of outgoing

calls on sp1

UCD-SNMP-

MIB::extNames.25

.100.25 .101.25 kam_dialog_type_outgoing_check_sp2Number of outgoing

calls on sp2

UCD-SNMP-

MIB::extNames.26

.100.26 .101.26 kam_usrloc_regusers_check_sp1Number of

subscribers with at

least one active

registration on sp1

UCD-SNMP-

MIB::extNames.27

.100.27 .101.27 kam_usrloc_regusers_check_sp2Number of

subscribers with at

least one active

registration on sp2

156

The sip:provider PRO Handbook mr3.8.8 157 / 236

Name in MIB Result OID Output OID Name Description

UCD-SNMP-

MIB::extNames.28

.100.28 .101.28 kam_usrloc_regdevices_check_sp1Total number of

registered end

devices on sp1

UCD-SNMP-

MIB::extNames.29

.100.29 .101.29 kam_usrloc_regdevices_check_sp2Total number of

registered end

devices on sp2

UCD-SNMP-

MIB::extNames.30

.100.30 .101.30 mysql_replication_discrepancies_check_sp1Number of MySQL

tables not in sync

between sp1 and sp2

UCD-SNMP-

MIB::extNames.31

.100.31 .101.31 mysql_replication_discrepancies_check_sp2Number of MySQL

tables not in sync

between sp1 and sp2

UCD-SNMP-

MIB::extNames.32

.100.32 .101.32 sip_check_self Summarized platform

check on active node

UCD-SNMP-

MIB::extNames.33

.100.33 .101.33 mysql_check_self Average number of

MySQL queries per

second on active

node

UCD-SNMP-

MIB::extNames.34

.100.34 .101.34 mysql_replication_check_selfMySQL replication

delay in seconds on

active node

UCD-SNMP-

MIB::extNames.35

.100.35 .101.35 mpt_check_self RAID status on active

node

UCD-SNMP-

MIB::extNames.36

.100.36 .101.36 exim_queue_check_self Number of mails

undelivered in MTA

queue on active node

UCD-SNMP-

MIB::extNames.37

.100.37 .101.37 provisioned_subscribers_check_selfNumber of

subscribers

provisioned on active

node

UCD-SNMP-

MIB::extNames.38

.100.38 .101.38 kam_dialog_active_check_selfNumber of active

calls on active node

UCD-SNMP-

MIB::extNames.39

.100.39 .101.39 kam_dialog_early_check_selfNumber of calls in

Early Media state on

active node

UCD-SNMP-

MIB::extNames.40

.100.40 .101.40 kam_dialog_type_local_check_selfNumber of active calls

local on active node

UCD-SNMP-

MIB::extNames.41

.100.41 .101.41 kam_dialog_type_relay_check_selfNumber of active

calls routed via peers

on active node

UCD-SNMP-

MIB::extNames.42

.100.42 .101.42 kam_dialog_type_incoming_check_selfNumber of incoming

calls on active node

157

The sip:provider PRO Handbook mr3.8.8 158 / 236

Name in MIB Result OID Output OID Name Description

UCD-SNMP-

MIB::extNames.43

.100.43 .101.43 kam_dialog_type_outgoing_check_selfNumber of outgoing

calls on active node

UCD-SNMP-

MIB::extNames.44

.100.44 .101.44 kam_usrloc_regusers_check_selfNumber of

subscribers with at

least one active

registration on active

node

UCD-SNMP-

MIB::extNames.45

.100.45 .101.45 kam_usrloc_regdevices_check_selfTotal number of

registered end

devices on active

node

UCD-SNMP-

MIB::extNames.46

.100.46 .101.46 mysql_replication_discrepancies_check_selfNumber of MySQL

tables not in sync

between sp1 and sp2

Tip

Some of the checks can be disabled (and some are disabled by default) through the config.yml file, and those checks will

then return an error message or an empty string in their extOutput. Enable those checks in the config file to get their output

in the SNMP OID tree. The enable/disable flags can be found in the checktools section.

158

The sip:provider PRO Handbook mr3.8.8 159 / 236

A Cloud PBX

The sip:provider PRO comes with a commercial Cloud PBX module to provide B2B features for small and medium sized enter-

prises. The following chapter describes the configuration of the PBX features.

A.1 Configuring the Device Management

The Device Management is used by admins and resellers to define the list of device models, firmwares and configurations available

for end customer usage. These settings are pre-configured for the default reseller up-front by Sipwise and have to be set up for

every reseller separately, so a reseller can choose the devices he’d like to serve and potentially tweak the configuration for them.

End customers choose from a list of Device Profiles, which are defined by a specific Device Model, a list of Device Firmwares and

a Device Configuration. The following sub-chapters describe the setup of these components.

To do so, go to Settings→Device Management.

Figure 4: Device Management

159

The sip:provider PRO Handbook mr3.8.8 160 / 236

A.1.1 Setting up Device Models

A Device Model defines a specific hardware device, like the vendor, model name, the number of keys and their capabilities. For

example a Cisco SPA504G has 4 keys, which can be used for private lines, shared lines (SLA) and busy lamp field (BLF). If you

have an additional attendant console, you get 32 more buttons, which can only do BLF.

In this example, we will create a Cisco SPA504G with an additional Attendant Console.

Expand the Device Models row and click Create Device Model.

First, you have to select the reseller this device model belongs to, and define the vendor and model name.

Figure 5: Create Device Model Part 1

In the Line/Key Range section, you can define the first set of keys, which we will label Phone Keys. The name is important,

because it is referenced in the configuration file template, which we will look into in the next sections. The SPA504G internal

phone keys support private lines (where the customer can assign a normal subscriber, which is used to place and receive standard

phone calls), shared lines (where the customer can assign a subscriber which is shared across multiple people) and busy lamp

field (where the customer can assign other subscribers to be monitored when they get a call, and which also acts as speed dial

button to the subscriber assigned for BLF), so we enable all 3 of them.

160

The sip:provider PRO Handbook mr3.8.8 161 / 236

Figure 6: Create Device Model Part 2

In order to also configure the attendant console, press the Add another Line/Key Range button to specify the attendant console

keys.

Again provide a name for this range, which will be Attendant Console 1 to match our configuration defined later. There

are 32 buttons on the attendant console, so set the number accordingly. Those 32 buttons only support BLF, so make sure to

uncheck the private and shared line options, and only check the busy lamp field option.

161

The sip:provider PRO Handbook mr3.8.8 162 / 236

Figure 7: Create Device Model Part 3

The last two settings to configure are the Front Image and MAC Address Image fields. Upload a picture of the phone here in the

first field, which is shown to the customer for him to recognize easily how the phone looks like. The MAC image is used to tell the

customer where he can read the MAC address from. This could be a picture of the back of the phone with the label where the

MAC is printed, or an instruction image how to get the MAC from the phone menu.

The rest of the fields are left at their default values, which are set to work with Cisco SPAs. Their meaning is as follows:

• Bootstrap Sync URI: If a stock phone is plugged in for the first time, it needs to be provisioned somehow to let it know where to

fetch its configuration file from. Since the stock phone doesn’t know about your server, you have to define an HTTP URI here,

where the customer is connected with his web browser to set the according field.

• Bootstrap Sync HTTP Method : This setting defines whether an HTTP GET or POST is sent to the Sync URI.

• Bootstrap Sync Params: This setting defines the parameters appended to the Sync URI in case of a GET, or posted in the

request body in case of POST, when the customer presses the Sync button later on.

Finally press Save to create the new device model.

162

The sip:provider PRO Handbook mr3.8.8 163 / 236

Figure 8: Create Device Model Part 4

A.1.2 Uploading Device Firmwares

A device model can optionally have one or more device firmware(s). Some devices like the Cisco SPA series don’t support direct

firmware updates from an arbitrary to the latest one, but need to go over specific firmware steps. In the device configuration

discussed next, you can return the next supported firmware version, if the phone passes the current version in the firmware URL.

Since a stock phone purchased from any shop can have an arbitrary firmware version, we need to upload all firmwares needed to

get from any old one to the latest one. In case of the Cisco SPA3x/SPA5x series, that would be the following versions, if the phone

starts off with version 7.4.x:

• spa50x-30x-7-5-1a.bin

• spa50x-30x-7-5-2b.bin

• spa50x-30x-7-5-5.bin

So to get an SPA504G with a firmware version 7.4.x to the latest version 7.5.5, we need to upload each firmware file as follows.

163

The sip:provider PRO Handbook mr3.8.8 164 / 236

Open the Device Firmware row in the Device Management section and press Upload Device Firmware.

Select the device model we’re going to upload the firmware for, then specify the firmware version and choose the firmware file,

then press Save.

Figure 9: Upload Device Firmware

Repeat this step for every firmware in the list above (and any new firmware you want to support when it’s available).

A.1.3 Creating Device Configurations

Each customer device needs a configuration file, which defines the URL to perform firmware updates, and most importantly, which

defines the subscribers and features configured on each of the lines and keys. Since these settings are different for each physical

phone at all the customers, the Cloud PBX module provides a template system to specify the configurations. That way, template

variables can be used in the generic configuration, which are filled in by the system individually when a physical device fetches its

configuration file.

To upload a configuration template, open the Device Configuration row and press Create Device Configuration.

Select the device model and specify a version number for this configuration (it is only for your reference to keep track of different

164

The sip:provider PRO Handbook mr3.8.8 165 / 236

versions). For Cisco SPA phones, keep the Content Type field to text/xml, since the configuration content will be served to the

phone as XML file.

For devices other than the Cisco SPA, you might set text/plain if the configuration file is plain text, or application/

octet-stream if the configuration is compiled into some binary form.

Finally paste the configuration template into the Content area and press Save.

Figure 10: Upload Device Configuration

The templates for certified device models are provided by Sipwise, but you can also write your own. The following variables can

be used in the template:

• config.url: The URL to the config file, including the device identifier (e.g. http://sip.example.org:1444/dev

ice/autoprov/config/001122334455).

• firmware.maxversion: The latest firmware version available on the system for the specific device.

• firmware.baseurl: The base URL to download firmwares (e.g. http://sip.example.org:1444/device/aut

oprov/firmware). To fetch the next newer firmware for a Cisco SPA, you can use the template line [% firmware.

baseurl %]/$MA/from/$SWVER/next.

165

The sip:provider PRO Handbook mr3.8.8 166 / 236

• phone.stationname: The name of the station (physical device) the customer specifies for this phone. Can be used to show

on the display of the phone.

• phone.lineranges: An array of lines/keys as specified for the device model. Each entry in the array has the following keys:

– name: The name of the line/key range as specified in the Device Model section (e.g. Phone Keys).

– num_lines: The number of lines/keys in the line range (e.g. 4 in our Phone Keys example, or 32 in our Attendant

Console 1 example).

– lines: An array of lines (e.g. subscriber definitions) for this line range. Each entry in the array has the following keys:

* keynum: The index of the key in the line range, starting from 0 (e.g. keynum will be 3 for the 4th key of our Phone Keys

range).

* rangenum: The index of the line range, starting from 0. The order of line ranges is as you have specified them (e.g.

Phone Keys was specified first, so it gets rangenum 0, Auto Attendant 1 gets rangenum 1).

* type: The type of the line/key, on of private, shared or blf.

* username: The SIP username of the line.

* domain: The SIP domain of the line.

* password: The SIP password of the line.

* displayname: The SIP Display Name of the line.

Within the configuration template itself, you can use any Template Toolkit directive and any own variables you like (just make sure

to not override any of the ones specified above). For documentation on the syntax, please refer to the Template Toolkit Manual.

A.1.4 Creating Device Profiles

When the customer configures his own device, he doesn’t select a Device Model directly, but a Device Profile. A device profile

specifies which model is going to be used with which configuration version. This allows the operator to create new configuration

files and assign them to a profile, while still keeping older configuration files for reference or roll-back scenarios. It also allows

to test new firmwares by creating a test device model with the new firmware and a specific configuration, without impacting any

existing customer devices.

To create a Device Profile for our phone, open the Device Profile row in the Device Management section and press Create Device

Profile.

Select the device configuration (which implicitly identifies a device model) and specify a Profile Name. This name is what the

customer sees when he is selecting a device he wants to provision, so pick a descriptive name which clearly identifies a device.

Press Save to create the profile.

166

http://www.template-toolkit.org/docs/manual/

The sip:provider PRO Handbook mr3.8.8 167 / 236

Figure 11: Create Device Profile

Repeat the steps as needed for every device you want to make available to customers.

A.2 Preparing PBX Rewrite Rules

In a PBX environment, the dial-plans usually looks different than for normal SIP subscribers. PBX subscribers should be able to

directly dial internal extensions (e.g. 100) instead of the full number to reach another PBX subscriber in the same PBX segment.

Therefore, we need to define specific Rewrite Rules to make this work.

The PBX dial plans are different from country to country. In the Central European area, you can directly dial an extension (e.g.

100), and if you want to dial an international number like 0049 1 23456, you have to dial a break-out digit first (e.g. 0), so the

number to be dialed is 0 0049 1 23456. Other countries are used to other break-out codes (e.g. 9), which then results in 9

0049 1 23456. If you dial a national number like 01 23456, then the number to actually be dialled is 9 01 23456.

Since all numbers must be normalized to E.164 format via inbound rewrite rules, the rules need to be set up accordingly.

Let’s assume that the break-out code for the example customers created below is 0, so we have to create a Rewrite Rule Set with

the following rules.

167

The sip:provider PRO Handbook mr3.8.8 168 / 236

A.2.1 Inbound Rewrite Rules for Caller

• Match Pattern: ˆ([1-9][0-9]+)$

• Replacement Pattern: ${caller_cloud_pbx_base_cli}\1

• Description: extension to e164

• Direction: Inbound

• Field: Caller

Figure 12: Inbound Rewrite Rule for Caller

A.2.2 Inbound Rewrite Rules for Callee

These rules are the most important ones, as they define which number formats the PBX subscribers can dial. For the break-out

code of 0, the following rules are necessary e.g. for German dialplans to allow pbx internal extension dialing, local area calls

without area codes, national calls with area code, and international calls with country codes.

PBX INTERNAL EXTENSION DIALIN

168

The sip:provider PRO Handbook mr3.8.8 169 / 236

• Match Pattern: ˆ([1-9][0-9]+)$

• Replacement Pattern: ${caller_cloud_pbx_base_cli}\1

• Description: extension to e164

• Direction: Inbound

• Field: Callee

LOCAL DIALING WITHOUT AREA CODE (USE BREAK-OUT CODE 0)

• Match Pattern: ˆ0([1-9][0-9]+)$

• Replacement Pattern: ${caller_cc}${caller_ac}\1

• Description: local to e164

• Direction: Inbound

• Field: Callee

NATIONAL DIALING (USE BREAK-OUT CODE 0 AND PREFIX AREA CODE BY 0)

• Match Pattern: ˆ00([1-9][0-9]+)$

• Replacement Pattern: ${caller_cc}\1

• Description: national to e164

• Direction: Inbound

• Field: Callee

INTERNATIONAL DIALING (USE BREAK-OUT CODE 0 AND PREFIX COUNTRY CODE BY 00)

• Match Pattern: ˆ000([1-9][0-9]+)$

• Replacement Pattern: \1

• Description: international to e164

• Direction: Inbound

• Field: Callee

169

The sip:provider PRO Handbook mr3.8.8 170 / 236

Figure 13: Inbound Rewrite Rule for Callee

A.2.3 Outbound Rewrite Rules for Caller

When a call goes to a PBX subscriber, it needs to be normalized in a way that it’s call-back-able, which means that it needs to have

the break-out code prefixed. We create a rule to show the calling number in international format including the break-out code. For

PBX-internal calls, the caller name will be shown (this is handled by implicitly setting domain preferences accordingly, so you don’t

have to worry about that in rewrite rules).

• Match Pattern: ˆ([1-9][0-9]+)$

• Replacement Pattern: 000\1

• Description: e164 to full international

• Direction: Outbound

• Field: Caller

170

The sip:provider PRO Handbook mr3.8.8 171 / 236

Figure 14: Outbound Rewrite Rule for Caller

Create a new Rewrite Rule Set for each dial plan you’d like to support. You can later assign it to customer domains and even to

subscribers, if a specific subscriber of a PBX customer would like to have his own dial plan.

A.3 Creating Customers and Pilot Subscribers

As with a normal SIP Account, you have to create a Customer contract per customer, and one Subscriber, which the customer

can use to log into the web interface and manage his PBX environment.

A.3.1 Creating a PBX Customer

Go to Settings→Customers and click Create Customer. We need a Contact for the customer, so press Create Contact.

171

The sip:provider PRO Handbook mr3.8.8 172 / 236

Figure 15: Create PBX Customer Part 1

Fill in the desired fields (you need to provide at least the Email Address) and press Save.

172

The sip:provider PRO Handbook mr3.8.8 173 / 236

Figure 16: Create PBX Customer Contact

The new Contact will be automatically selected now. Also select a Billing Profile you want to use for this customer. If you don’t

have one defined yet, press Create Billing Profile, otherwise select the one you want to use.

173

The sip:provider PRO Handbook mr3.8.8 174 / 236

Figure 17: Create PBX Customer Part 2

Next, you need to select the Product for the PBX customer. Since it’s going to be a PBX customer, select the product Cloud PBX

Account.

Since PBX customers are supposed to manage their subscribers by themselves, they are able to create them via the web interface.

To set an upper limit of subscribers a customer can create, define the value in the Max Subscribers field.

Important

As you will see later, both PBX subscribers and PBX groups are normal subscribers, so the value defined here limits

the overall amount of subscribers and groups. A customer can create an unlimited amount of subscribers if you leave

this field empty.

Press Save to create the customer.

174

The sip:provider PRO Handbook mr3.8.8 175 / 236

Figure 18: Create PBX Customer Part 3

A.3.2 Creating a PBX Pilot Subscriber

Once the customer is created, you need to create at least one Subscriber for the customer, so he can log into the web interface

and manage the rest by himself.

Click the Details button on the newly created customer to enter the detailed view.

175

The sip:provider PRO Handbook mr3.8.8 176 / 236

Figure 19: Go to Customer Details

To create the subscriber, open the Subscribers row and click Create Subscriber.

176

The sip:provider PRO Handbook mr3.8.8 177 / 236

Figure 20: Go to Create Subscriber

For your pilot subscriber, you need a SIP domain, a pilot number (the main number of the customer PBX), the web credentials for

the customer to log into the web interfaces, and the SIP credentials to authenticate via a SIP device.

Important

In a PBX environment, customers can create their own subscribers. As a consequence, each PBX customer should

have its own SIP domain, in order to not collide with subscribers created by other customers. This is important because

two customers are highly likely to create a subscriber (or group, which is also just a subscriber) called office. If they

are in the same SIP domain, they’d both have the SIP URI office@pbx.example.org, which is not allowed, and

the an end customer will probably not understand why office@pbx.example.org is already taken, because he

(for obvious reasons, as it belongs to a different customer) will not see this subscriber in his subscribers list.

177

The sip:provider PRO Handbook mr3.8.8 178 / 236

Tip

To handle one domain per customer, you should create a wild-card entry into your DNS server like *.pbx.example.org,

which points to the IP address of pbx.example.org, so you can define SIP domains like customer1.pbx.example.

org or customer2.pbx.example.org without having to create a new DNS entry for each of them. For proper secure

access to the web interface and to the SIP and XMPP services, you should also obtain a SSL wild-card certificate for *.pbx.

example.org to avoid certification warnings on customers’ web browsers and SIP/XMPP clients.

So to create a new domain for the customer, click Create Domain.

Figure 21: Go to Create Customer Domain

Specify the domain you want to create, and select the PBX Rewrite Rule Set which you created in Section A.2, then click Save.

178

The sip:provider PRO Handbook mr3.8.8 179 / 236

Figure 22: Create Customer Domain

Finish the subscriber creation by providing an E.164 number, which is going to be the base number for all other subscribers within

this customer, the web username and password for the pilot subscriber to log into the web interface, and the sip username and

password for a SIP device to connect to the PBX.

The parameters are as follows:

• Domain: The domain in which to create the pilot subscriber. Each customer should get his own domain as described above to

not collide with SIP usernames between customers.

• E.164 Number: The primary number of the PBX. Calls to this number are routed to the pilot subscriber, and each subsequent

subscriber created for this customer will use this number as its base number, suffixed by an individual extension. You can later

assign alias numbers also for DID support.

• Display Name: This field is used on phones to identify subscribers by their real names instead of their number or extension.

On outbound calls, the display name is signalled in the Display-Field of the From header, and it’s used as a name in the XMPP

contact lists.

• Web Username: The username for the subscriber to log into the customer self-care web interface. This is optional, if you don’t

179

The sip:provider PRO Handbook mr3.8.8 180 / 236

want a subscriber to have access to the web interface.

• Web Password: The password for the subscriber to log into the customer self-care web interface.

• SIP Username: The username for the subscriber to authenticate on the SIP and XMPP service. It is automatically used for

devices, which are auto-provisioned via the Device Management, or can be used manually by subscribers to sign into the SIP

and XMPP service with any arbitrary clients.

• SIP Password: The password for the subscriber to authenticate on the SIP and XMPP service.

Figure 23: Create Pilot Subscriber Part 1

180

The sip:provider PRO Handbook mr3.8.8 181 / 236

Figure 24: Create Pilot Subscriber Part 2

Once the subscriber is created, he can log into the customer self-care interface at https://<your-ip>:1443/login/

subscriber and manage his PBX, like creating other users and groups, assigning Devices to subscribers and configure the

Auto Attendant and more.

A.4 Managing a Customer PBX

With the pilot subscriber created before, the customer can log into the customer self-care interface and manage the PBX.

As an administrator, you can also do this for him, and we will walk through the typical steps as an administrator to configure the

different features.

Go the the Customer Details of the PBX customer you want to configure, e.g. by navigating to Settings→Customers and clicking

the Details button of the customer you want to configure.

181

The sip:provider PRO Handbook mr3.8.8 182 / 236

A.4.1 Creating more Subscribers

Since we already created a pilot subscriber, more settings now appear on the Customer Details view. The sections we’re interested

in for now are the Subscribers and PBX Groups sections.

Figure 25: Subscribers and PBX Groups

To create another subscriber for the customer PBX, open the Subscribers row and click Create Subscriber.

182

The sip:provider PRO Handbook mr3.8.8 183 / 236

Figure 26: Create a Subscriber Extension

When creating another subscriber in the PBX after having the pilot subscriber, some fields are different now, because the Domain

and E.164 Number are already pre-defined at the pilot subscriber level.

What you need to define for a new subscriber is the Group the subscriber is supposed to be in. We don’t have a group yet, so

create one by clicking Create Group.

A PBX Group has four settings:

• Name: The name of the group. This is used to identify a group when assigning it to subscribers on one hand, and also

subscribers are pushed as server side contact lists to XMPP clients, where they are logically placed into their corresponding

groups.

• Extension: The extension of the group, which is appended to the primary number of the pilot subscriber, so you can actually

call the group from the outside. If our pilot subscriber number is 43 1 9999 and the extension is 100, you can reach the

group from the outside by dialing 43 1 9999 100. Since PBX Groups are actually just normal subscribers in the system,

you can assign Alias Numbers to it for DID later, e.g. 43 1 9998.

• Hunting Policy: If you call a group, then all members in this group are ringing based on the policy you choose. Serial

183

The sip:provider PRO Handbook mr3.8.8 184 / 236

Ringing causes each of the subscribers to be tried one after another, until one of them picks up or all subscribers are tried.

Parallel Ringing causes all subscribers in the group to be tried in parallel. Note that a subscriber can have a call-forward

configured to some external number (e.g. his mobile phone), which will work as well.

• Serial Hunting Timeout: This value defines for how long to ring each member of a group in case of serial hunting until the next

subscriber is being tried.

We will only fill in the Name and Extension for now, as the hunting policy can be changed later if needed. Click Save to create the

group.

Figure 27: Create a PBX Group

Once the group is created and selected, fill out the rest of the form as needed. Instead of the E.164 Number, you can now only

choose the Extension, which is appended to the primary number of the pilot subscriber and is then used as primary number for

this particular subscribers. Again, if your pilot number is 43 1 9999 and you choose extension 101 here, the number of this

subscriber is going to be 43 1 9999 101. Also, you can again later assign more alias numbers (e.g. 43 1 9997) to this

subscriber for DID.

The rest of the fields is as usual, with Display Name defining the real name of the user, Web Username and Web Password

allowing the subscriber to log into the customer self-care interface, and the SIP Username and SIP Password to allow signing into

184

The sip:provider PRO Handbook mr3.8.8 185 / 236

the SIP and XMPP services.

Figure 28: Finish PBX Subscriber Creation Part 1

Click Save to create the subscriber.

185

The sip:provider PRO Handbook mr3.8.8 186 / 236

Figure 29: Finish PBX Subscriber Creation Part 2

Repeat the steps to create all the subscribers and groups as needed. An example of a small company configuration in terms of

subscribers and groups might look like this:

186

The sip:provider PRO Handbook mr3.8.8 187 / 236

Figure 30: Example of Subscribers List

Tip

The subscribers can be reached via 3 different ways. First, you can call them by their SIP URIs (e.g. by dialing frank.

fowler@customer1.pbx.example.org) from both inside and outside the PBX. Second, you can dial by the full number

(e.g. 43 1 9999 201; depending on your rewrite rules, you might need to add a leading \+ or 00 or leave out the country

code when dialing from the outside, and adding a 0 as break-out digit when dialing from the inside) from both inside and

outside the PBX. Third, you can dial just the extension (e.g. 201) from inside the PBX. If the subscriber also has an alias

number assigned, you can dial that number also, according to your dial-plan in the rewrite rules.

A.4.2 Assigning Subscribers to Devices

Basically you can register any SIP phone to the system using the SIP credentials of your subscribers. However, the platform

supports Device Provisioning of certain vendors and models, as described in Section A.1.

To configure a physical device, open the PBX Devices row in the Customer Details view and click Create Device.

You have to set three general parameters for your new device, which are:

187

The sip:provider PRO Handbook mr3.8.8 188 / 236

• Device Profile: The actual device profile you want to use. This has been pre-configured in the Device Management by the

administrator or reseller, and the customer can choose from the list of profiles (which is a combination of an actual device plus

its corresponding configuration).

• MAC Address/Identifier: The MAC address of the phone to be added. The information can usually either be found on the back

of the phone, or in the phone menu itself.

• Station Name: Since you can (depending on the actual device) configure more lines on a phone, you can give it a station name,

like Reception or the name of the owner of the device.

In addition to that information, you can configure the lines (subscribers) you want to use on which key, and the mode of operation

(e.g. if it’s a normal private phone line, or if you want to monitor another subscriber using BLF, or if you want it to act as shared

line using SLA).

For example, a Cisco SPA504G has 4 keys you can use for private and shared lines as well as BLF on the phone itself, and in our

example we have an Attendant Console attached to it as well, so you have 32 more keys for BLF.

The settings per key are as follows:

• Subscriber: The subscriber to use (for private/shared lines) or to monitor (for BLF).

• Line/Key: The key where to configure this subscriber to.

• Line/Key Type: The mode of operation for this key, with the following options (depending on which options are enabled in the

Device Model configuration for this device:

– Private Line: Use the subscriber as a regular SIP phone line. This means that the phone will register the subscriber, and you

can place and receive phone calls with/for this subscriber.

– Shared Line: The subscriber is also registered on the system and you can place and receive calls. If another phone has the

same subscriber also configured as shared line, both phones will ring on incoming calls, and you can pick the call up on either

of them. You cannot place a call with this subscriber though if the line is already in use by another subscriber. However, you

can "steal" a running call by pressing the key where the shared line is configured to barge into a running call. The other party

(the other phone where the shared line is configured too) will then be removed from the call (but can steal the call back the

same way).

– BLF Key: The Busy Lamp Field monitors the call state of another subscriber and provides three different functionalities,

depending on the actual state:

* Speed Dial: If the monitored subscriber is on-hook, the user can press the button and directly call the monitored subscriber.

* Call Pickup: If the monitored subscriber is ringing, the user can press the button to pick up the call on his own phone.

* State Indication: It the monitored subscriber is on the phone, the key is indicating that the monitored subscriber is currently

busy.

In our example, we will first configure a private line on the first key, and BLF for another subscriber on the second key.

188

The sip:provider PRO Handbook mr3.8.8 189 / 236

Figure 31: Configuring a PBX Device Part 1

This configures the general options plus the first key. To configure the second key, click Add another Line/Key and fill out the

second line config accordingly. Click Save to save your PBX device configuration.

189

The sip:provider PRO Handbook mr3.8.8 190 / 236

Figure 32: Configuring a PBX Device Part 2

Once the PBX device is saved, you will see it in the list of PBX Devices.

Synchronizing a PBX Device for initial Usage

Since a stock device obtained from an arbitrary distributor doesn’t know anything about your system, it can’t fetch its configuration

from there. For that to work, you need to push the URL of where the phone can get the configuration to the phone once.

In order to do so, click the Sync Device button on the device you want to configure for the very first time.

190

The sip:provider PRO Handbook mr3.8.8 191 / 236

Figure 33: Go to Sync Device

Important

As you will see in the next step, you need the actual IP address of the phone to push the provisioning URL onto it. That

implies that you need access to the phone to get the IP, and that your browser is in the same network as the phone in

order to be able to connect to it, in case the phone is behind NAT.

Enter the IP Address of the phone (on Cisco SPAs, press Settings 9, where Settings is the paper sheet symbol, and note

down the Current IP setting), then click Push Provisioning URL.

191

The sip:provider PRO Handbook mr3.8.8 192 / 236

Figure 34: Sync Device

You will be redirected directly to the phone, and the Provisioning URL is automatically set. If everything goes right, you will see a

confirmation page from the phone that it’s going to reboot.

192

The sip:provider PRO Handbook mr3.8.8 193 / 236

Figure 35: Device Sync Confirmation from Phone

You can close the browser window/tab and proceed to sync the next subscriber.

Tip

You only have to do this step once per phone to tell it the actual provisioning URL, where it can fetch the configuration from. From

there, it will regularly sync with the server automatically to check for configuration changes, and applies them automatically.

A.4.3 Configuring Sound Sets for the Customer PBX

In the Customer Details view, there is a row Sound Sets, where the customer can define his own sound sets for Auto Attendant,

Music on Hold and the Office Hours Announcement.

To create a new sound set, open the Sound Sets row and click Create Sound Set.

If you do this as administrator or reseller, the Reseller and/or Customer is pre-selected, so keep it as is. If you do this as customer,

you don’t see any Reseller or Customer fields.

193

The sip:provider PRO Handbook mr3.8.8 194 / 236

So the important settings are:

• Name: The name of the sound set as it will appear in the Subscriber Preferences, where you can assign the sound set to a

subscriber.

• Description: A more detailed description of the sound set.

• Default for Subscribers: If this setting is enabled, then the sound set is automatically assigned to all already existing sub-

scribers which do NOT have a sound set assigned yet, and also for all newly created subscribers.

Fill in the settings and click Save.

Figure 36: Create Customer Sound Set

To upload files to your Sound Set, click the Files button for the Sound Set.

Uploading a Music-on-Hold File

Open the music_on_hold row and click Upload on the music_on_hold entry. Choose a WAV file from your file system, and click

the Loopplay setting if you want to play the file in a loop instead of just once. Click Save to upload the file.

194

The sip:provider PRO Handbook mr3.8.8 195 / 236

Figure 37: Upload MoH Sound File

Uploading Auto-Attendant Sound Files

When configuring a Call Forward to the Auto Attendant, it will play the following files:

• aa_welcome: This is the welcome message (the greeting) which is played when someone calls the Auto Attendant.

• each available pair of aa_X_for/aa_X_option: Each menu item in the Auto Attendant consists of two parts. The for part,

which plays something like Press One for, and the option part, which play something like Marketing. The Auto Attendant only

plays those menu options where both the for part and the option part is present, so if you only have 3 destinations you’d like

to offer, and you want them to be on keys 1, 2 and 3, you have to upload files for aa_1_for, aa_1_option, aa_2_for,

aa_2_option and aa_3_for and aa_3_option.

Important

The sound files only define the general structure of what is being played to the caller. The actual destinations behind

your options are configured separately in Section A.4.4.

195

The sip:provider PRO Handbook mr3.8.8 196 / 236

An example configuration could look like this:

Figure 38: Upload Auto Attendant Sound File

A.4.4 Configuring the Auto Attendant

The Auto Attendant feature can be activated for any subscriber in the Customer PBX individually. There are three steps involved.

First, you have to prepare a Sound Set to have Auto Attendant sound files. Second, you have to configure the destinations for

the various options you provide (e.g. pressing 1 should go to the marketing subscriber, 2 to development and 3 to some

external number). Third, you have to set a Call Forward to the Auto Attendant.

To do so, go to Customer Details and in the Subscribers section, click the Preferences button of the subscriber, where the Auto

Attendant should be set.

Preparing the Sound Set

Create a Sound Set and upload the Sound Files for it as described in Section A.4.3. Back in the Subscriber Preferences view, set

the Customer Sound Set preference to the Sound Set to be used. To do so, click Edit on the Customer Sound Set preference and

assign the set to be used.

196

The sip:provider PRO Handbook mr3.8.8 197 / 236

Configuring the Auto Attendant Slots

In the Auto Attendant Slots section, click the Edit Slots button to configure the destination options.

Click Add another Slot to add a destination option, select the Key the destination should be assigned to, and enter a Destination.

The destination can be a subscriber username (e.g. marketing), a full SIP URI (e.g. sip:michelle.miller@custom

er1.pbx.example.org or any external SIP URI) or a number or extension (e.g. 491234567 or 101).

Repeat the step for every option you want to add, then press Save.

Figure 39: Define the Auto Attendant Slots

Activating the Auto Attendant

Once the Sound Set and the Slots are configured, activate the Auto Attendant by setting a Call Forward to Auto Attendant.

To do so, open the Call Forwards section in the Subscriber Preferences view and press Edit on the Call Forward type (e.g. Call

Forward Unconditional if you want to redirect callers unconditionally to the Auto Attendant).

Select Auto Attendant and click Save to activate the Auto Attendant.

197

The sip:provider PRO Handbook mr3.8.8 198 / 236

Figure 40: Set a Call Forward to Auto Attendant

Tip

As with any other Call Forward, you can define more complex forwarding rules in the Advanced View to only forward the call to

the Auto Attendant during specific time periods, or as a fallback if no one picks up the office number.

A.5 Device Auto-Provisioning Security

A.5.1 Server Certificate Authentication

The Cisco SPA phones can connect to the provisioning interface of the PBX via HTTP and HTTPS. When perform secure provi-

sioning over HTTPS, the phones validate the server certificate to check if its a legitimate Cisco provisioning server. To pass this

check, the provisioning interface must provide a certificate signed by Cisco for that exact purpose.

The following steps describe how to obtain such a certificate.

First, a new SSL key needs to be generated:

$ openssl genrsa -out provisioning.key 2048

198

The sip:provider PRO Handbook mr3.8.8 199 / 236

Generating RSA private key, 2048 bit long modulus

...+++

...+++

e is 65537 (0x10001)

Next, a certificate signing request needs to be generated as follows. Provide your company details.

Important

The Common Name (e.g. server FQDN or YOUR name) field is crucial here. Provide an FQDN which the phones

will later use via DNS to connect to the provisioning interface, for example pbx.example.org. Cisco does NOT support

wild-card certificates.

Important

Leave the password empty when asked for it (press Enter without entering anything).

$ openssl req -new -key provisioning.key -out provisioning.csr

You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter ’.’, the field will be left blank.

Country Name (2 letter code) [AU]:AT

State or Province Name (full name) [Some-State]:Vienna

Locality Name (eg, city) []:Vienna

Organization Name (eg, company) [Internet Widgits Pty Ltd]:Sipwise GmbH

Organizational Unit Name (eg, section) []:Operations

Common Name (e.g. server FQDN or YOUR name) []:pbx.example.org

Email Address []:office@sipwise.com

Please enter the following ’extra’ attributes

to be sent with your certificate request

A challenge password []:

An optional company name []:

Finally, compress the provisioning.csr file via ZIP and send it to our Cisco sales representative. If in doubt, you can try to

send it directly to ciscosb-certadmin@cisco.com asking them to sign it.

Important

Only send the CSR file. Do NOT send the key file, as this is your private key!

199

The sip:provider PRO Handbook mr3.8.8 200 / 236

Important

Ask for both the signed certificate AND a so-called combinedca.crt which is needed to perform client authentication via

SSL. Otherwise you can not restrict access to Cisco SPAs only.

You will receive a signed CRT file, which Sipwise can use to configure the PBX provisioning interface.

A.5.2 Client Certificate Authentication

If a client connects via HTTPS, the server also checks for the client certificate in order to validate that the device requesting the

configuration is indeed a legitimate Cisco phone, and not a fraudulent user with a browser trying to fetch user credentials.

A.6 Device Bootstrap and Resync Workflows

The IP phones supported by the PBX need to initially be configured to fetch their configuration from the system. Since the phones

have no initial information about the system and its provisioning URL, they need to be boot-strapped. Furthermore, changes for a

specific device might have to be pushed to the device immediately instead of waiting for it to re-fetch the configuration automatically.

The following chapters describe the work-flows how this is accomplished without having the customer directly accessing the phone.

200

The sip:provider PRO Handbook mr3.8.8 201 / 236

A.6.1 Cisco SPA Device Bootstrap

Initial Bootstrapping

Figure 41: Initially bootstrap a PBX device

Subsequent Device Resyncs

If one of the subscribers configured on a PBX device is registered via SIP, the system can trigger a re-sync of the phone directly

via SIP without having the customer enter the IP of the phone again. This is accomplished by sending a special NOTIFY message

201

The sip:provider PRO Handbook mr3.8.8 202 / 236

to the subscriber:

NOTIFY sip:subscriber@domain SIP/2.0

To: <sip:subscriber@domain>

From: <sip:subscriber@domain>;tag=some-random-tag

Call-ID: some-random-call-id

CSeq: 1 NOTIFY

Subscription-State: active

Event: check-sync

Content-Length: 0

In order to prevent unauthorized re-syncs, the IP phone challenges the request with its own SIP credentials, so the NOTIFY is

sent twice, once without authentication, and the second time with the subscriber’s own SIP credentials.

Figure 42: Resync a registered PBX device

202

The sip:provider PRO Handbook mr3.8.8 203 / 236

A.6.2 Panasonic Device Bootstrap

Initial Bootstrapping

Panasonic provides a zero-touch provisioning mechanism in their firmwares, which causes the factory-reset phones to connect to

a Panasonic web service at https://provisioning.e-connecting.net to check if a custom provisioning URL is configured for the MAC

address of the phone. If an association between the MAC and a provisioning URL is found, the web service redirects the phone

to the provisioning URL, where the phone connects to in order to obtain the configuration file.

Figure 43: Initially bootstrap a Panasonic phone

The CloudPBX module ensures that when an end customer creates a Panasonic device, the MAC address is automatically

provisioned on the Panasonic web service via an API call, so the customer’s phone can use the correct provisioning URL to

connect to the auto-provisioning server of the CloudPBX.

As a result, no customer interaction is required to bootstrap Panasonic phones, other than just creating the phone with the proper

MAC on the CloudPBX web interface.

Factory Reset

For already provisioned phones, the end customer might need to perform a factory reset:

• Press Settings or Setup

• Enter #136

• Select Factory Setting and press Enter

• Select Yes and press Enter

203

The sip:provider PRO Handbook mr3.8.8 204 / 236

• Select Yes and press Enter

The default username for factory-reset phones is admin with password adminpass.

Subsequent Device Resyncs

The same procedure as with Cisco SPA phones applies, once a subscriber configured on the phone is registered.

A.6.3 Yealink Device Bootstrap

Initial Bootstrapping

Yealink provides a zero-touch provisioning mechanism in their firmwares, which causes the factory-reset phones to connect to

a Yealink web service at https://rps.yealink.com to check if a custom provisioning URL is configured for the MAC address of the

phone. If an association between the MAC and a provisioning URL is found, the web service redirects the phone to the provisioning

URL, where the phone connects to in order to obtain the configuration file.

If both Cisco SPA and Yealink phones are used, an issue with the Cisco-signed server certificate configured on the provisioning port

(1444 by default) of the CloudPBX provisioning server arises. Yealink phones by default only connect to trusted server certificates,

and the Cisco CA certificate used to sign the server certificate is not trusted by Yealink. Therefore, a two-step approach is used to

disable the trusted check via a plain insecure http port (1445 by default) first, where only device-generic config options are served.

No user credentials are provided in this case, because no SSL client authentication can be performed. The generic configuration

disables the trusted check, and at the same time changes the provisioning URL to the secure port, where the Yealink phone is

now able to connect to.

Figure 44: Initially bootstrap a Yealink phone

204

The sip:provider PRO Handbook mr3.8.8 205 / 236

The CloudPBX module ensures that when an end customer creates a Yealink device, the MAC address is automatically provisioned

on the Yealink web service via an API call, so the customer’s phone can use the correct insecure bootstrap provisioning URL to

connect to the auto-provisioning server of the CloudPBX for the generic configuration, which in turn provides the information on

where to connect to for the secure, full configuration.

As a result, no customer interaction is required to bootstrap Yealink phones, other than just creating the phone with the proper

MAC on the CloudPBX web interface.

Factory Enable Yealink Auto-Provisioning

Older Yealink firmwares don’t automatically connect to the Yealink auto-provisioning server on initial boot, so it needs to be enabled

manually by the end customer.

• Log in to http://phone-ip/servlet?p=hidden&q=load using admin and admin as user/password when prompted

• Change Redirect Active to Enabled

• Press Confirm and power-cycle phone

Subsequent Device Resyncs

The same procedure as with Cisco SPA phones applies, once a subscriber configured on the phone is registered.

205

The sip:provider PRO Handbook mr3.8.8 206 / 236

B Sipwise Clients and Apps

The sip:provider PRO comes with two optional and commercial Unified Communication Clients for full end-to-end integration of

voice, video, chat and presence features. On one hand, there is the sip:pone Desktop client for Microsoft Windows, Apple OSX

and Linux. On the other hand, Sipwise provides the sip:phone Mobile App for Apple iOS and Android.

Both clients are fully brand-able to the customer’s corporate identity. The clients are not part of the standard delivery and need to

be licensed separately. The mobile client does not yet support the full range of features.

B.1 sip:phone Mobile App

The sip:phone Mobile App is a mobile client for iOS and Android and supports voice calls via SIP, as well as presence and instant

messaging via XMPP. The following chapters describe the steps needed to integrate it into the sip:provider PRO.

B.1.1 Zero Config Launcher

Part of the mobile apps is a mechanism to sign up to the service via a 3rd party web site, which is initiated on the login screen and

rendered within the app. During the sign-up process, the 3rd party service is supposed to create a new account and/or subscriber

on the sip:provider PRO (e.g. automatically via the API) and provide the end user with the access credentials.

In order to minimize the end customer steps to log in using these credentials (especially ruling out the need to manually enter

them), the mobile apps come with a zero config mechanism, which allows to deliver the access credentials via a side channel (e.g.

Email, SMS) and packed into a URL, which the user just has to click, and which automatically launches the app with the correct

credentials. The following picture shows the overall work flow.

206

The sip:provider PRO Handbook mr3.8.8 207 / 236

Figure 45: Provisioning Push Workflow

There are two components provided by a 3rd party system, which are not part of the sip:provider PRO. One is the 3rd Party

Sign-Up Form, and the other is the 3rd Party Launch Handler. The purpose of these components is to make the end customer to

open a link with the access credentials via the sip:phone app.

3rd Party Sign-Up Form

The 3rd Party Sign-Up Form is a web site the app shows to the end user when he taps the sign-up link on the Login Screen of the

app. There, the end customer usually provides his contact details like name, address, phone number and/or email address etc.

After validation, this web site creates the account and/or subscriber on the sip:provider PRO via the API.

After successfully creating the account and/or subscriber, this site needs to construct a specially crafted URL, which is sent back

to the end customer via a side channel. Ideally, this channel would be SMS if you want to verify the end user’s mobile number, or

an email if you want to verify her email address.

The sip:phone app registers a URL schema handler for URLs starting with sipphone://. If you start such a link, the app

performs a Base64 decoding of the string right after the sipphone:// schema string, then decrypts the resulting binary string

via AES using keys defined during the branding step. The resulting string is supposed to be

207

The sip:provider PRO Handbook mr3.8.8 208 / 236

username=$user&server=$domain&password=$password.

Therefore, the 3rd Party Sign-Up Form needs to construct this string using the credentials defined while creating the subscriber

via the sip:provider PRO API, then encrypt it via AES, and finally perform a Base64 encoding of the result.

Note

Up until and including version mr3.8.8 of the sip:provider PRO, the SIP login credentials are used here. Future versions will

connect to the REST interface of the sip:provider PRO using the web credentials first and fetch the SIP credentials along with

other settings from there.

An example code snipped in Perl to properly encode such a string is outlined here. The AES key and initialization vector ($key

and $iv) are the standard values of the sip:phone app and should work, if you haven’t specified other values during the branding

process.

#!/usr/bin/perl -w

use strict;

use Crypt::Rijndael;

use MIME::Base64;

use URI::Escape;

my $key = ’iBmTdavJ8joPW3HO’;

my $iv = ’tww21lQe6cmywrp3’;

my $plain = do { local $/; <> };

pkcs#5 padding to 16 bytes blocksize

my $pad = 16 - (length $plain) % 16;

$plain .= pack(’C’, $pad) x $pad;

my $cipher = Crypt::Rijndael->new(

$key,

Crypt::Rijndael::MODE_CBC()

);

$cipher->set_iv($iv);

my $crypted = $cipher->encrypt($plain);

store b64-encoded string and print to STDOUT

my $b64 = encode_base64($crypted, ’’);

print $b64, "\n";

print to STDOUT using URL escaping also

print uri_escape($b64), "\n";

This snippet takes a string from STDIN, encrypts it via AES, encodes it via Base64 and prints the result on STDOUT. It also prints

a second line with the same string, but this time URL escaped. To test it, you would run it as follows on a shell, granted it’s stored

at /path/to/encrypt.pl.

echo -n ’username=testuser&server=example.org&password=testpass’ \

| /path/to/encrypt.pl

208

The sip:provider PRO Handbook mr3.8.8 209 / 236

This command would result in the output strings CI8VN8toaE40w8E4OH2rAuFj3Qev9QdLI/Wv/VaBCVK2yNkBZjxE9

eafXkkrQfmYdeu01PquS5P40zhUq8Mfjg== and CI8VN8toaE40w8E4OH2rAuFj3Qev9QdLI%2FWv%2FVaBCVK

2yNkBZjxE9eafXkkrQfmYdeu01PquS5P40zhUq8Mfjg%3D%3D. The sip:phone can use the former string to automati-

cally fill in the login form of the Login Screen if started via a Link like sipphone://CI8VN8toaE40w8E4OH2rAuFj3Qev9

QdLI/Wv/VaBCVK2yNkBZjxE9eafXkkrQfmYdeu01PquS5P40zhUq8Mfjg==.

Here is the same code in PHP.

#!/usr/bin/php

<?php

$key = "iBmTdavJ8joPW3HO";

$iv = "tww21lQe6cmywrp3";

$clear = fgets(STDIN);

$cipher = fnEncrypt($clear, $key, $iv);

echo $cipher, "\n";

echo urlencode($cipher), "\n";

function fnEncrypt($clear, $key, $iv) {

$pad = 16 - strlen($clear) % 16;

$clear .= str_repeat(pack(’C’, $pad), $pad);

return rtrim(base64_encode(mcrypt_encrypt(

MCRYPT_RIJNDAEL_128, $key, $clear,

MCRYPT_MODE_CBC, $iv)), "\0");

}

?>

Similar to the perl version, you can call it like this:

echo -n ’username=testuser&server=example.org&password=testpass’ \

| /path/to/encrypt.php

However, a URL with the sipphone:// schema is not displayed as a link in SMS or Email clients and thus can not be clicked

by the end customer, so you need to make a detour via a normal http:// URL. To do so, you need a 3rd Party Launch Handler

to trick the phone to open such a link.

This means that the 3rd Party Sign-Up Form needs to return a link with an URL pointing to the 3rd Party Launch Handler and

pass the URL escaped string gathered above to the client via SMS or Email. Since it is a standard http:// link, it is click-able

on the phone and can be launched from virtually any client (SMS, Email etc.) which properly renders an HTML link.

A possible SMS sent to the end customer (via the phone number entered in the sign-up from) could therefore look as follows

(trying to stay below 140 chars).

http://example.org/p?c=CI8VN8toaE40w8E4OH2rAuFj3Qev9QdLI

%2FWv%2FVaBCVK2yNkBZjxE9eafXkkrQfmYdeu01PquS5P40zhUq8Mfjg%3D%3D to launch sipphone

An HTML Email could look like this:

209

The sip:provider PRO Handbook mr3.8.8 210 / 236

Welcome to Example.org,

<a href="http://www.example.org/sipphone?c=CI8VN8toaE40w8E4OH2rAuFj3Qev9QdLI

%2FWv%2FVaBCVK2yNkBZjxE9eafXkkrQfmYdeu01PquS5P40zhUq8Mfjg%3D%3D">

click here

 to log in.

That way, you can on one hand verify the contact details of the user, and on the other hand send her the login credentials in a

secure manner.

3rd Party Launch Handler

The URL http://www.example.org/sipphone mentioned above can be any simple script, and its sole purpose is to

send back a 301 Moved Permanently or 302 Moved Temporarily with a Location:sipphone://xxxxxxxx

xxxx header to tell the phone to open this link via the sip:phone app. The xxxxxxxxxxxx is actually the plain (non-URL-escaped)

string generated by the script above.

An example CGI script performing this task follows.

#!/usr/bin/perl -w

use strict;

use CGI;

my $q = CGI->new;

my $c = $q->param(’c’);

print CGI::redirect("sipphone://$c");

The script simply takes the URL parameter c from the URL http://www.example.org/sipphone?c=CI8VN8toaE40

w8E4OH2rAuFj3Qev9QdLI%2FWv%2FVaBCVK2yNkBZjxE9eafXkkrQfmYdeu01PquS5P40zhUq8Mfjg%3D%3D crafted

above and puts its content into a Location header using the sipphone:// schema, and finally sends a 301 Moved

Permanently back to the phone.

The phone follows the redirect by opening the URL using the sip:phone app, which in turn decrypts the content and fills in the login

form.

Note

Future versions of the sip:provider PRO will ship with this launch handler integrated in the system. Up until and including version

mr3.8.8, this script needs to be installed on any webserver manually.

B.1.2 Mobile Push Notification

The sip:phone provides mobile push functionality to remotely start the app via the Google GCM or Apple APNS notification systems

on inbound calls, in case the app is not registered.

210

The sip:provider PRO Handbook mr3.8.8 211 / 236

Caution

Although stopping the App on the phone and letting it wake up via the push notification system safes some battery

power on the phone, the whole push notification concept is a best effort framework for both iOS and Android provided

by Apple and Google, respectively, and is therefore not 100% reliable.

Architecture

If the mobile push functionality is enabled, the call-flow looks as follows if there are no devices registered for a subscriber.

Figure 46: Mobile Push Workflow

1. Caller sends INVITE to proxy

2. Callee is offline, proxy forwards call to AS

3. AS subscribes to registration state of callee at proxy

4. AS plays early media to caller for feedback, as process might take a while

5. AS sends push request to GCM/APNS service

6. GCM/APNS service delivers request to callee

211

The sip:provider PRO Handbook mr3.8.8 212 / 236

7. Callee accepts request and confirms app start (unattended on Android), registers at proxy

8. Proxy sends registration notification to AS

9. AS deflects call back to proxy

10. Proxy sends INVITE to callee

11. Callee accepts call

12. Response is sent back to caller, call setup completed

In case of a timeout (no registration notification within a certain time) at the application server, the call is rejected with an error.

Configuring the Push Daemon

The push daemon needs your specific keys and/or certificates obtained from Apple and Google, respectively.

Please read the official GCM Getting Started Guide for Android on how to obtain a push notification key from Google for GCM.

For instructions how to generate Apple push notification certificates and keys, please read the official Provisioning Procedures

from Apple.

The final configuration in your /etc/ngcp-config/config.yml should look as follows.

pushd:

apns:

certificate: ’/etc/ssl/private/your.phone.push.dev.pem’

enable: ’yes’

endpoint: gateway.push.apple.com

feedback_endpoint: feedback.push.apple.com

feedback_interval: 3600

key: ’’

socket_timeout: 0

enable: ’yes’

gcm:

enable: ’yes’

key: ’xxxxxxxxxxxxxxxxxxxxxxxx-yyyyyyyyyyyyyy’

port: 45060

processes: 4

ssl: ’yes’

Once configured, execute ngcpcfg apply to confirm your changes.

212

http://developer.android.com/google/gcm/gs.html
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ProvisioningDevelopment.html#//apple_ref/doc/uid/TP40008194-CH104-SW1
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ProvisioningDevelopment.html#//apple_ref/doc/uid/TP40008194-CH104-SW1

The sip:provider PRO Handbook mr3.8.8 213 / 236

C NGCP configs overview

C.1 config.yml overview

Config.yml is the main configuration YAML file used by Sipwise NGCP. After every changes it need to run the command ngcpcfg

apply to apply changes (followed by ngcpcfg push in the PRO version to apply changes to sp2). The following is a brief description

of the main variables contained into /etc/ngcp-config/config.yml file.

C.1.1 asterisk

The following is the asterisk section:

asterisk:

log:

facility: local6

rtp:

maxport: 20000

minport: 10000

sip:

bindport: 5070

dtmfmode: rfc2833

voicemail:

enable: ’no’

fromstring: ’Voicemail server’

greeting:

busy_custom_greeting: ’/home/user/file_no_extension’

busy_overwrite_default: ’no’

busy_overwrite_subscriber: ’no’

unavail_custom_greeting: ’/home/user/file_no_extension’

unavail_overwrite_default: ’no’

unavail_overwrite_subscriber: ’no’

mailbody: ’You have received a new message from ${VM_CALLERID} in voicebox ${VM_MAILBOX ←↩
} on ${VM_DATE}.’

mailsubject: ’[Voicebox] New message ${VM_MSGNUM} in voicebox ${VM_MAILBOX}’

max_msg_length: 180

maxgreet: 60

maxmsg: 30

maxsilence: 0

min_msg_length: 3

normalize_match: ’^00|\+([1-9][0-9]+)$’

normalize_replace: ’$1’

serveremail: voicebox@sip.sipwise.com

• log.facility: rsyslog facility for asterisk log, defined in /etc/asterisk/logger.conf.

• rtp.maxport: RTP maximum port used by asterisk.

213

The sip:provider PRO Handbook mr3.8.8 214 / 236

• rtp.minport: RTP minimun port used by asterisk.

• sip.bindport: SIP asterisk internal bindport.

• voicemail.greetings.*: set the audio file path for voicemail custom unavailable/busy greetings

• voicemail.mailbody: Mail body for incoming voicemail.

• voicemail.mailsubject: Mail subject for incoming voicemail.

• voicemail.max_msg_length: Sets the maximum length of a voicemail message, in seconds.

• voicemail.maxgreet: Sets the maximum length of voicemail greetings, in seconds.

• voicemail.maxmsg: Sets the maximum number of messages that may be kept in any voicemail folder.

• voicemail.min_msg_length: Sets the minimun length of a voicemail message, in seconds.

• voicemail.maxsilence: Maxsilence defines how long Asterisk will wait for a contiguous period of silence before terminating an

incoming call to voice mail. The default value is 0, which means the silence detector is disabled and the wait time is infinite.

• voicemail.serveremail: Provides the email address from which voicemail notifications should be sent.

• voicemail.normalize_match: Regular expression to match the From number for calls to voicebox.

• voicemail.normalize_replace: Replacement string to return, in order to match an existing voicebox.

C.1.2 backuptools

The following is the backup tools section:

backuptools:

cdrexport_backup:

enable: ’no’

etc_backup:

enable: ’no’

mail:

address: noc@company.org

error_subject: ’[ngcp-backup] Problems detected during daily backup’

log_subject: ’[ngcp-backup] Daily backup report’

send_errors: ’no’

send_log: ’no’

mysql_backup:

enable: ’no’

exclude_dbs: ’syslog sipstats information_schema’

rotate_days: 7

storage_dir: ’/var/backup/ngcp_backup’

temp_backup_dir: ’/tmp/ngcp_backup’

• backuptools.cdrexport_backup.enable: Enable backup of cdrexport (.csv) directory.

214

The sip:provider PRO Handbook mr3.8.8 215 / 236

• backuptools.etc_backup.enable: Enable backup of /etc/* directory.

• backuptools.mail.address: Destination email address for backup emails.

• backuptools.mail.error_subject: Subject for error emails.

• backuptools.mail.log_subjetc: Subject for daily backup report.

• backuptools.mail.send_error: Send daily backup error report.

• backuptools.mail.send_log: Send daily backup log report.

• backuptools.mysql_backup.enable: Enable daily mysql backup.

• backuptools.mysql_backup.exclude_dbs: exclude mysql databases from backup.

• backuptools.rotate_days: Number of backups to keep stored.

• backuptools.storage_dir: Storage directory of backups.

• backuptools.temp_backup_dir: Temporary storage directory of backups.

C.1.3 cdrexport

The following is the cdr export section:

cdrexport:

daily_folder: ’yes’

export_failed: ’no’

export_incoming: ’no’

exportpath: ’/home/jail/home/cdrexport’

full_names: ’yes’

monthly_folder: ’yes’

• cdrexport.daily_folder:: Set yes if you want to create a daily folder for CDRs under the configured path.

• cdrexport.export_failed: Export CDR for failed calls.

• cdrexport.export_incoming: Export CDR for incoming calls.

• cdrexport.exportpath: The path to store CDRs in .csv format.

• cdrexport.full_names: Use full namen for CDRs instead of short ones.

• cdrexport.monthly_folder: Set yes if you want to create a monthly folder (ex. 201301 for January 2013) for CDRs under config-

ured path.

215

The sip:provider PRO Handbook mr3.8.8 216 / 236

C.1.4 checktools

The following is the check tools section:

checktools:

collcheck:

cpuidle: 0.1

dfused: 0.9

eximmaxqueue: 15

loadlong: 2

loadmedium: 2

loadshort: 3

maxage: 600

memused: 0.7

siptimeout: 15

swapfree: 0.5

asr_nsr_statistics: 1

exim_check_enable: 0

force: 0

kamailio_check_dialog_active_enable: 1

kamailio_check_dialog_early_enable: 1

kamailio_check_dialog_incoming_enable: 1

kamailio_check_dialog_local_enable: 1

kamailio_check_dialog_outgoing_enable: 1

kamailio_check_dialog_relay_enable: 1

kamailio_check_usrloc_regdevices_enable: 1

kamailio_check_usrloc_regusers_enable: 1

mpt_check_enable: 1

mysql_check_enable: 1

mysql_check_replication: 1

oss_check_provisioned_subscribers_enable: 1

sip_check_enable: 1

sipstats_check_num_packets: 1

sipstats_check_num_packets_perday: 1

sipstats_check_partition_size: 1

snmpd:

communities:

public:

- localhost

• checktools.collcheck.cpuidle: Sets the minimum value for CPU usage (0.1 means 10%).

• checktools.collcheck.dfused: Sets the maximun value for DISK usage (0.9 means 90%).

• checktools.collcheck.loadlong/loadlong/loadshort: Max values for load (long, short, medium term).

• checktools.collcheck.maxage: Max age in seconds.

• checktools.collcheck.memused: Sets the maximun value for MEM usage (0.7 means 70%).

216

The sip:provider PRO Handbook mr3.8.8 217 / 236

• checktools.collcheck.siptimeout: Max timeout for sip options.

• checktools.collcheck.swapfree: Sets the minimun value for SWAP free (0.5 means 50%).

• checktools.exim_check_enable: Exim queue check plugin for collectd.

• checktools.asr_nsr_statistics: enable/Disable ASR/NSR statistics.

• checktools.force: Perform checks even if not active in /etc/motd.

• checktools.kamailio_check_dialog_*/kamailio_check_usrloc_*: Enable/Disable SNMP collective check pluglin for Kamailio.

• checktools.mpt_check_enable: MPT raid SNMP check plugin.

• checktools.mysql_check_enable: MySQL SNMP check plugin.

• checktools.mysql_check_replication: MySQL replication check.

• checktools.oss_check_provisioned_subscribers_enable: OSS provisioned subscribers count plugin.

• checktools.sip_check_enable/sipstats_check_*: Enable/Disable SIP check plugins.

• checktools.snmpd.communities: Sets the snmp community and sources (separated by comma , - ex. source: 127.0.0.1,

10.10.10.2, 10.10.10.3).

C.1.5 cleanuptools

The following is the cleanup tools section:

cleanuptools:

acc_cleanup_days: 90

archive_targetdir: ’/var/backups/cdr’

binlog_days: 15

cdr_archive_months: 12

cdr_backup_months: 6

cdr_backup_retro: 3

compress: gzip

sql_batch: 10000

trash_cleanup_days: 30

• cleanuptools.acc_cleanup_days: Clean up ACC entry older then 90 days.

• cleanuptools.binlog_days: Expire MySQL binlogs after 15 days.

• cleanuptools.cdr_archive_months: How many months worth of records to keep in the table and not move into the monthly

archive tables.

• cleanuptools.cdr_backup_months: How many months worth of records to keep in the table and not move into the monthly

backup tables.

217

The sip:provider PRO Handbook mr3.8.8 218 / 236

• cleanuptools.cdr_backup_retro: How many months to process for backups, going backwards in time. Using the example above,

with this value set to "3", the months October, September and August would be backed up, while any older records would be left

untouched.

• cleanuptools.sql_batch: How many records to process within a single statement.

• cleanuptools.trash_cleanup_days: Clean up acc_trash and acc_backup entry after 30 days.

C.1.6 database

The following is the database section:

database:

bufferpoolsize: 24768M

• database.bufferpoolsize: Innodb_buffer_pool_size value in /etc/mysql/my.cnf

C.1.7 faxserver

The following is the fax server section:

faxserver:

default_owner: 4312345

failfax_recv_email: root@localhost

failfax_send_email: failfax@ngcp.sipwise.local

fax_gateways:

- sip:127.0.0.1:5070

hylafax:

jobretry: 1

start: ’yes’

iaxmodem:

start: ’yes’

type: software

mail_from: ’Sipwise NGCP FaxServer <voipfax@ngcp.sipwise.local>’

webfax_user: ngcpwebfax

• faxserver.failfax_recv_email: A recipient of a failed "fax receive".

• faxserver.failfax_send_email: A recipient of a failed "fax send".

• faxserver.fax_gateways: Set here the correct Patton gateway ip address and port (Available only with the hardware fax solution).

Otherwise leave as it is.

• faxserver.hylafax.jobretry: How many times the hylafax faxserver should retry to send fax.

• faxserver.hylafax.start: Enable hylafax at startup.

• faxserver.iaxmodem.start: Enable iaxmodem at startup.

218

The sip:provider PRO Handbook mr3.8.8 219 / 236

• faxserver.type: Type of faxserver solution. Accepted values are software or hardware (with Patton Gateway).

• faxserver.mail_from: Sets the e-mail From Header for incoming fax.

• faxserver.webfax_user: User used when sending fax from CSC web interface.

C.1.8 general

The following is the general section:

general:

adminmail: adjust@example.org

companyname: sipwise

lang: en

• general.adminmail: Email address used by monit to send notifications to.

• general.lang: Sets sounds language (e.g: de for German)

C.1.9 heartbeat

The following is the heartbeat section:

heartbeat:

hb_watchdog:

action_max: 5

enable: ’yes’

interval: 10

transition_max: 10

pingnodes:

- 10.60.1.1

- 192.168.3.4

• heartbeat.hb_watchdog.enable: Enable heartbeat watchdog in order to prevent and fix split brain scenario.

• heartbeat.hb_watchdog.action_max: Max errors before taking any action.

• heartbeat.hb_watchdog.interval: Interval in secs for the check.

• heartbeat.hb_watchdog.transition_max: Max checks in transition state.

• heartbeat.pingnodes: List of pingnodes for heartbeat. Minimun 2 entries, otherwise by default NGCP will set the default gateway

and DNS servers as pingnodes.

219

The sip:provider PRO Handbook mr3.8.8 220 / 236

C.1.10 intercept

The following is the legal intercept section:

intercept:

captagent:

port: 18090

schema: http

enabled: ’no’

• intercept.captagent.enable: Enable captagent for Lawful Interception (addiotional NGCP module).

C.1.11 kamailio

The following is the kamailio section:

kamailio:

lb:

debug: ’no’

extra_sockets: ~

max_forwards: 70

nattest_exception_ips:

- 1.2.3.4

- 5.6.7.8

pkg_mem: 16

port: 5060

security:

dos_ban_enable: ’yes’

dos_ban_time: 300

dos_reqs_density_per_unit: 50

dos_sampling_time_unit: 5

dos_whitelisted_ips: ~

dos_whitelisted_subnets: ~

failed_auth_attempts: 3

failed_auth_ban_enable: ’yes’

failed_auth_ban_time: 3600

shm_mem: 2012

start: ’yes’

strict_routing_safe: ’no’

tcp_children: 8

tcp_max_connections: 2048

tls:

enable: ’no’

port: 5061

sslcertfile: ’/etc/kamailio/kamailio-selfsigned.pem’

sslcertkeyfile: ’/etc/kamailio/kamailio-selfsigned.key’

udp_children: 8

220

The sip:provider PRO Handbook mr3.8.8 221 / 236

use_dns_cache: ’on’

proxy:

allow_info_method: ’no’

allow_peer_relay: ’no’

allow_refer_method: ’no’

authenticate_bye: ’no’

cf_depth_limit: 10

children: 8

debug: ’no’

default_expires: 3600

enum_suffix: e164.arpa.

filter_100rel_from_supported: ’yes’

fritzbox:

enable: ’no’

prefixes:

- 112

- 110

- 118[0-9]{2}

foreign_domain_via_peer: ’no’

ignore_auth_realm: ’no’

keep_original_to: ’no’

max_expires: 43200

max_gw_lcr: 128

max_registrations_per_subscriber: 5

min_expires: 60

nathelper_dbro: ’no’

natping_interval: 30

natping_processes: 7

nonce_expire: 300

pbx:

hunt_display_indicator: ’[h]’

perform_peer_lcr: 0

pkg_mem: 16

port: 5062

presence:

enable: ’yes’

proxy_lookup: ’no’

set_ruri_to_peer_auth_realm: ’no’

shm_mem: 2012

start: ’yes’

tcp_children: 4

use_enum: ’no’

usrloc_dbmode: 1

• kamailio.lb.debug: Enable intensive debug level.

• kamailio.lb.extra_sockets: Add here extra sockets for Load Balancer.

221

The sip:provider PRO Handbook mr3.8.8 222 / 236

• kamailio.lb.max_forwards: Set the value for the Max Forwards SIP header for outgoing messages.

• kamailio.lb.nattest_exception_ips: List of IPs that don’t need the NAT test.

• kamailio.lb.shm_mem: Shared memory used by Kamailio Load Balancer. The default value is auto generated by the system,

depending on your system architecture.

• kamailio.lb.pkg_mem: PKG memory used by Kamailio Load Balancer. The default value is auto generated by the system,

depending on your system architecture.

• kamailio.lb.security.dos_ban_enable: Enable/Disable DoS Ban.

• kamailio.lb.security.dos_ban_time: Sets the ban time.

• kamailio.lb.security.dos_reqs_density_per_unit:: Sets the requests density per unit (if we receive more then * lb.dos_reqs_density_per_unit

within dos_sampling_time_unit the user will be banned).

• kamailio.lb.security.dos_sampling_time_unit: Sets the DoS unit time.

• kamailio.lb.security.dos_whitelisted_ips: Write here the whitelisted IPs.

• kamailio.lb.security.failed_auth_attempts: Sets how many authentication attempts allowed before ban.

• kamailio.lb.security.failed_auth_ban_enable: Enable/Disable authentication ban.

• kamailio.lb.security.failed_auth_ban_time: Sets how long a user/IP has be banned.

• kamailio.lb.strict_routing_safe: Enable strict routing handle feature.

• kamailio.lb.tls.enable: Enable TLS socket.

• kamailio.lb.tls.port: Set TLS listening port.

• kamailio.lb.tls.sslcertificate: Path for the SSL certificate.

• kamailio.lb.tls.sslcertkeyfile: Path for the SSL key file.

• kamailio.proxy.allow_info_method: Allow INFO method.

• kamailio.proxy.allow_peer_relay: Allow peer relay. Call coming from a peer that doesn’t matcha a local subscriber will try to go

out again, matching the peering rules.

• kamailio.proxy.allow_refer_method: Allow REFER method. Enable it with caution.

• kamailio.proxy.authenticate_bye: Enable BYE authentication.

• kamailio.proxy.cf_depth_limit: CF loop detector. How many CF loops are allowed before drop the call.

• kamailio.proxy.debug: Enable intensive debug level.

• kamailio.proxy.default_expires: Default expires value in seconds for REGISTER messages.

• kamailio.proxy.foreign_domain_via_peer: Enable calls to foreign domains via peers.

• kamailio.proxy.shm_mem: Shared memory used by Kamailio Proxy. The default value is auto generated by the system, depend-

ing on your system architecture.

222

The sip:provider PRO Handbook mr3.8.8 223 / 236

• kamailio.proxy.pkg_mem: PKG memory used by Kamailio Proxy. The default value is auto generated by the system, depending

on your system architecture.

• kamailio.proxy.enum_suffix: Sets ENUM suffix - don’t forget . (dot).

• kamailio.proxy.filter_100rel_from_supported: Enable filtering of 100rel from Supported header, to disable PRACK.

• kamailio.proxy.fritzbox.enable: Enable detection for Fritzbox special numbers. Ex. Fritzbox add the AC prefix to emergency

numbers.

• kamailio.proxy.fritzbox.prefixes: Specifies special prefixes to detect in order to remove the AC prefix added by Fritzbox.

• kamailio.proxy.ignore_auth_realm: Ignore SIP authentication realm.

• kamailio.proxy.keep_original_to: Not used now.

• kamailio.proxy.max_expires: Sets the maximum expires in seconds for registration.

• kamailio.proxy.max_gw_lcr: Defines the maximum number of gateways in lcr_gw table

• kamailio.proxy.max_registrations_per_subscriber: Sets the maximum registration per subscribers.

• kamailio.proxy.min_expires: Sets the minimum expires in seconds for registration.

• kamailio.proxy.natping_interval: Sets the NAT ping interval in seconds.

• kamailio.proxy.nathelper_dbro: Defaul is "no". This will be "yes" on CARRIER in order to activate the use of a read-only connec-

tion using LOCAL_URL

• kamailio.proxy.nonce_expire: Nonce expire time in seconds.

• kamailio.proxy.perform_peer_lcr: Enable/Disable Least Cost Routing based on peering fees.

• kamailio.proxy.port: SIP listening port.

• kamailio.proxy.presence.enable: Enable/disable presence feature

• kamailio.proxy.set_ruri_to_peer_auth_realm: Set R-URI using peer auth realm

• kamailio.proxy.use_enum: Enable/Disable ENUM feature.

C.1.12 mediator

The following is the mediator section:

mediator:

interval: 10

• mediator.interval: Running interval of mediator.

223

The sip:provider PRO Handbook mr3.8.8 224 / 236

C.1.13 nginx

The following is the nginx section:

nginx:

status_port: 8081

xcap_port: 1080

• nginx.status_port: Status port used by nginx server

• nginx.xcap_port: XCAP port used by nginx server

C.1.14 ntp

The following is the ntp server section:

ntp:

servers:

- 0.debian.pool.ntp.org

- 1.debian.pool.ntp.org

- 2.debian.pool.ntp.org

- 3.debian.pool.ntp.org

• ntp.servers: Define your NTP server list.

C.1.15 ossbss

The following is the ossbss section:

ossbss:

apache:

autoprov:

certfile: ’/etc/ngcp-config/ssl/myserver.crt’

certkeyfile: ’/etc/ngcp-config/ssl/myserver.key’

host: localhost

port: 1444

sslcertfile: ’/etc/ngcp-config/ssl/myserver.crt’

sslcertkeyfile: ’/etc/ngcp-config/ssl/myserver.key’

sslclientauth: ’yes’

port: 2443

proxyluport: 1080

restapi:

sslcertfile: ’/etc/ngcp-panel/api_ssl/api_ca.crt’

sslcertkeyfile: ’/etc/ngcp-panel/api_ssl/api_ca.key’

serveradmin: support@sipwise.com

servername: "\"myserver\""

224

The sip:provider PRO Handbook mr3.8.8 225 / 236

ssl_enable: ’yes’

sslcertfile: ’/etc/ngcp-config/ssl/myserver.crt’

sslcertkeyfile: ’/etc/ngcp-config/ssl/myserver.key’

frontend: fcgi

htpasswd:

-

pass: ’{SHA}w4zj3mxbmynIQ1jsUEjSkN2z2pk=’

user: ngcpsoap

logging:

apache:

acc:

facility: daemon

identity: oss

level: info

err:

facility: local7

level: info

ossbss:

facility: local0

identity: provisioning

level: DEBUG

web:

facility: local0

level: DEBUG

provisioning:

allow_ip_as_domain: 1

allow_numeric_usernames: 0

auto_allow_cli: 1

carrier:

account_distribution_function: roundrobin

prov_distribution_function: roundrobin

credit_warnings:

-

domain: example.com

recipients:

- nobody@example.com

threshold: 1000

faxpw_min_char: 0

log_passwords: 0

no_logline_truncate: 0

pw_min_char: 6

routing:

ac_regex: ’[1-9]\d{0,4}’

cc_regex: ’[1-9]\d{0,3}’

sn_regex: ’[1-9]\d+’

tmpdir: ’/tmp’

225

The sip:provider PRO Handbook mr3.8.8 226 / 236

• ossbss.htpasswd: Sets the username and SHA hashed password for SOAP access. You can generate the password using the

following command: htpasswd -nbs myuser mypassword.

• ossbss.provisioning.allow_ip_as_domain: Allow or not allow IP address as SIP domain (0 is not allowed).

• ossbss.provisioning.allow_numeric_usernames: Allow or not allow numeric SIP username (0 is not allowed).

• ossbss.provisioning.faxpw_min_char: Minimum number of characters for fax passwords.

• ossbss.provisioning.pw_min_char: Minimum number of characters for sip passwords.

• ossbss.provisioning.log_password: Enable logging of passwords.

• ossbss.provisioning.routing: Regexp for allowed AC (Area Code), CC (Country Code) and SN (Subscriber Number).

C.1.16 pbx (only with additional cloud PBX module installed)

The following is the PBX section:

pbx:

bindport: 5085

enable: ’no’

highport: 55000

lowport: 50001

media_processor_threads: 10

session_processor_threads: 10

xmlrpcport: 8095

• pbx.enable: Enable Cloud PBX module.

C.1.17 prosody

The following is the prosody section:

prosody:

ctrl_port: 5582

log_level: info

• prosody.ctrl_port: XMPP server control port.

• prosody.log_level: Prosody loglevel.

C.1.18 pushd

The following is the pushd section:

226

The sip:provider PRO Handbook mr3.8.8 227 / 236

pushd:

apns:

certificate: ’’

enable: ’no’

endpoint: gateway.sandbox.push.apple.com

feedback_endpoint: feedback.sandbox.push.apple.com

feedback_interval: 3600

key: ’’

socket_timeout: 0

enable: ’no’

gcm:

enable: ’no’

key: ’’

port: 45060

processes: 4

ssl: ’yes’

unique_device_ids: ’no’

• pushd.enable: Enable/Disable Push Notification feature.

• pushd.apns.certificate: Specify the Apple certificate for push notification.

• pushd.apns.enable: Enable/Disable Apple push notification.

• pushd.apns.key: Specify the Apple key for push notification.

• pushd.gcm.enable: Enable/Disable Google push notification.

• pushd.gcm.key: Specify the Google key for push notification.

C.1.19 qos

The following is the QOS section:

qos:

tos_rtp: 184

tos_sip: 184

• qos.tos_rtp: TOS value for RTP traffic.

• qos.tos_sip: TOS value for SIP traffic.

C.1.20 rate-o-mat

The following is the rate-o-mat section:

227

The sip:provider PRO Handbook mr3.8.8 228 / 236

rateomat:

enable: ’yes’

loopinterval: 10

splitpeakparts: 0

• rateomat.enable: Enable/Disable Rate-o-mat

• rateomat.loopinterval: How long we shall sleep before looking for unrated CDRs again.

• rateomat.splitpeakparts: Whether we should split CDRs on peaktime borders.

C.1.21 redis

The following is the redis section:

redis:

database_amount: 16

port: 6379

syslog_ident: redis

• redis.database_amout: Set the number of databases in redis. The default database is DB 0.

• redis.port: Accept connections on the specified port, default is 6379

• redis.syslog_ident: Specify the syslog identity.

C.1.22 reminder

The following is the reminder section:

reminder:

retries: 2

retry_time: 60

sip_fromdomain: voicebox.sipwise.local

sip_fromuser: reminder

wait_time: 30

weekdays: ’2, 3, 4, 5, 6, 7’

• reminder.retries: How many times the reminder feature have to try to call you.

• reminder.retry_time: Seconds between retries.

• reminder.wait_time: Seconds to wait for an answer.

228

The sip:provider PRO Handbook mr3.8.8 229 / 236

C.1.23 rsyslog

The following is the rsyslog section:

rsyslog:

elasticsearch:

action:

resumeretrycount: ’-1’

bulkmode: ’on’

dynSearchIndex: ’on’

enable: ’yes’

queue:

dequeuebatchsize: 300

size: 5000

type: linkedlist

external_address:

external_log: 0

external_loglevel: warning

external_port: 514

external_proto: udp

ngcp_logs_preserve_days: 93

• rsyslog.elasticsearch.enable: Enable/Disable Elasticsearch web interface

• rsyslog.external_address: Set the remote rsyslog server.

• rsyslog.ngcp_logs_preserve_days: Specify how many days to preserve old rotated log files in /var/log/ngcp/old path.

C.1.24 rtpproxy

The following is the rtp proxy section:

rtpproxy:

allow_userspace_only: ’yes’

maxport: 40000

minport: 30000

rtp_timeout: 21600

rtp_timeout_onhold: 3600

• rtpproxy.allow_userspace_only: Enable/Disable the user space failover for rtpengine (yes means enable). By default rtpengine

works in kernel space.

• rtpproxy.maxport: Maximum port used by rtpengine for RTP traffic.

• rtpproxy.minport: Minimum port used by rtpengine for RTP traffic.

• rtpproxy.rtp_timeout: Maximum limit in seconds for a call (6h).

• rtpproxy.rtp_timeout_onhold: Maximum limit in seconds for an onhold (1h).

229

The sip:provider PRO Handbook mr3.8.8 230 / 236

C.1.25 security

The following is the security section:

security:

firewall:

blacklist_networks_4: ~

blacklist_networks_6: ~

enable: ’yes’

sipwise_support_access: ’no’

whitelist_networks_4: ~

whitelist_networks_6: ~

• security.firewall.enable: Enable/Disable security configuration for IPv6 and IPv6 (sysctl_ipv6.conf, sysctl_ipv4.conf).

C.1.26 sems

The following is the SEMS section:

sems:

bindport: 5080

conference:

enable: ’yes’

max_participants: 10

debug: ’no’

highport: 50000

lowport: 40001

media_processor_threads: 10

prepaid:

enable: ’yes’

sbc:

calltimer_enable: ’yes’

calltimer_max: 3600

outbound_timeout: 6000

sdp_filter:

codecs: PCMA,PCMU,telephone-event

enable: ’yes’

mode: whitelist

session_timer:

enable: ’yes’

max_timer: 7200

min_timer: 90

session_expires: 300

session_processor_threads: 10

vsc:

block_override_code: 80

cfb_code: 90

230

The sip:provider PRO Handbook mr3.8.8 231 / 236

cfna_code: 93

cft_code: 92

cfu_code: 72

clir_code: 31

directed_pickup_code: 99

enable: ’yes’

park_code: 97

reminder_code: 55

speedial_code: 50

unpark_code: 98

voicemail_number: 2000

xmlrpcport: 8090

• sems.conference.enable: Enable/Disable conference feature.

• sems.conference.max_participants: Sets the number of concurrent participant.

• sems.highport: Maximum ports used by sems for RTP traffic.

• sems.debug: Enable/Disable debug mode.

• sems.lowport: Minimum ports used by sems for RTP traffic.

• sems.prepaid.enable: Enable/Disable prepaid feature.

• sems.sbc.calltimer_max: Sets the maximum call duration for inter-domain calls.

• sems.sbc.outbound_timeout:: Sets the maximum call duration for outboud calls.

• sems.sbc.session_timer.enable: Enable/Disable session timers (deprecated, use the web interface configuration).

• sems.vsc.*: Define here the VSC codes.

C.1.27 sshd

The following is the sshd section:

sshd:

listen_addresses:

- 0.0.0.0

• sshd: specify interface where SSHD should run on. By default sshd listens on all IPs found in network.yml with type ssh_ext.

Unfortunately sshd can be limited to IPs only and not to interfaces. Current option allows to specify allowed IPs (or all IPs with

0.0.0.0).

231

The sip:provider PRO Handbook mr3.8.8 232 / 236

C.1.28 voisniff

The following is the voice sniffer section:

voisniff:

admin_panel: ’no’

daemon:

bpf: ’port 5060 or 5062 or ip6 proto 44 or ip[6:2] & 0x1fff != 0’

external_interfaces: ’eth0 eth1’

filter:

exclude:

-

active: 0

case_insensitive: 1

pattern: ’\ncseq: *\d+ +(register|notify|options)’

include: []

internal_interfaces: lo

mysql_dump_threads: 4

start: ’no’

threads_per_interface: 10

partitions:

increment: 700000

keep: 10

• voisniff.admin_panel: Enable/Disable SIP STATS on Admin interface. Default is no.

• voisniff.deamon.external_interfaces: Define binding interfaces.

• voisniff.deamon.start: Change to yes if you want voisniff start at boot. Default is no.

C.1.29 www_admin

The following is the WEB Admin interface (www_admin) section:

www_admin:

ac_dial_prefix: 0

apache:

autoprov_port: 1444

billing_features: 1

callingcard_features: 0

callthru_features: 0

cc_dial_prefix: 00

conference_features: 1

contactmail: adjust@example.org

dashboard:

enabled: 1

default_admin_settings:

call_data: 0

232

The sip:provider PRO Handbook mr3.8.8 233 / 236

is_active: 1

is_master: 0

read_only: 0

show_passwords: 1

domain:

preference_features: 1

rewrite_features: 1

vsc_features: 0

fastcgi_workers: 2

fax_features: 1

fees_csv:

element_order:

- source

- destination

- direction

- zone

- zone_detail

- onpeak_init_rate

- onpeak_init_interval

- onpeak_follow_rate

- onpeak_follow_interval

- offpeak_init_rate

- offpeak_init_interval

- offpeak_follow_rate

- offpeak_follow_interval

- use_free_time

http_admin:

autoprov_port: 1444

port: 1443

serveradmin: support@sipwise.com

servername: "\"myserver\""

ssl_enable: ’yes’

sslcertfile: ’/etc/ngcp-config/ssl/myserver.crt’

sslcertkeyfile: ’/etc/ngcp-config/ssl/myserver.key’

http_csc:

autoprov_bootstrap_port: 1445

autoprov_port: 1444

port: 443

serveradmin: support@sipwise.com

servername: "\"myserver\""

ssl_enable: ’yes’

sslcertfile: ’/etc/ngcp-config/ssl/myserver.crt’

sslcertkeyfile: ’/etc/ngcp-config/ssl/myserver.key’

logging:

apache:

acc:

facility: daemon

identity: oss

233

The sip:provider PRO Handbook mr3.8.8 234 / 236

level: info

err:

facility: local7

level: info

peer:

preference_features: 1

peering_features: 1

security:

password_allow_recovery: 0

password_max_length: 40

password_min_length: 6

password_musthave_digit: 0

password_musthave_lowercase: 1

password_musthave_specialchar: 0

password_musthave_uppercase: 0

password_sip_autogenerate: 0

password_sip_expose_subadmin: 1

password_web_autogenerate: 0

password_web_expose_subadmin: 1

speed_dial_vsc_presets:

vsc:

- ’*0’

- ’*1’

- ’*2’

- ’*3’

- ’*4’

- ’*5’

- ’*6’

- ’*7’

- ’*8’

- ’*9’

subscriber:

auto_allow_cli: 0

extension_features: 0

voicemail_features: 1

• www_admin.http_admin.*: Define the Administration interface and certificates.

• www_admin.http_csc.*: Define the Customers interface and certificates.

• www_admin.contactmail: Email to show in the GUI’s Error page.

C.1.30 www_csc

The following is the WEB Subscriber selfcare (www_csc) section:

www_csc:

234

The sip:provider PRO Handbook mr3.8.8 235 / 236

ac_dial_prefix: 0

apache:

port: 443

serveradmin: support@sipwise.com

servername: myserver

ssl_enable: ’yes’

sslcertfile: ’/etc/ngcp-config/ssl/myserver.crt’

sslcertkeyfile: ’/etc/ngcp-config/ssl/myserver.key’

cc_dial_prefix: 00

display_account_info: 0

enable: ’no’

fastcgi_workers: 2

logging:

apache:

acc:

facility: daemon

identity: csc

level: info

err:

facility: local7

level: info

main_menu:

account: 1

addressbook: 1

callblock: 1

callforward: 1

calllist: 1

desktop: 1

device: 0

fax: 1

reminder: 1

voicebox: 1

payment_features: 0

sip_server: sip.yourdomain.tld

site_config:

company:

city: ’’

email: ’’

fax: ’’

hotline: ’’

logo: https://please.adjust.invalid/path/to/logo.gif

name: ’Your Company’

phone: ’’

street: ’’

webserver: ’’

default_language: en

default_uri: ’/desktop’

languages:

235

The sip:provider PRO Handbook mr3.8.8 236 / 236

- en

- es

- fr

- de

- it

title: ’Sipwise NGCP CSC’

site_domain: sip.yourdomain.tld

tftp_server: tftp.yourdomain.tld

• www_csc.apache: Apache configuration for /etc/apache/site-enable/ngcp-csc-admin file.

• www_csc.company: Set here your own company information.

• www_csc.default_language: Default language for CSC interface.

• www_csc.title: Title for CSC interface.

• www_csc.sip_server: Set here your sip server URL.

236

	Introduction
	About this Document
	Getting Help
	Phone Support
	Ticket System

	What is the sip:provider PRO?
	What is inside the sip:provider PRO?
	Who should use the sip:provider PRO?

	Platform Architecture
	SIP Signaling and Media Relay
	SIP and Media Elements
	SIP Load-Balancer
	SIP Proxy/Registrar
	SIP Back-to-Back User-Agent (B2BUA)
	SIP App-Server
	Media Relay

	Basic Call Flows
	Endpoint Registration
	Basic Call
	Session Keep-Alive
	Voicebox Calls

	High Availability and Fail-Over
	Overview
	Core Concepts and Configuration
	Administration

	Fax Server Architecture
	Software-Based Fax Server
	Fax2Mail Architecture
	Sendfax Architecture

	Hardware-Based Fax Server
	Fax2Mail Architecture
	Sendfax Architecture

	Upgrading the sip:provider PRO
	Preparation
	Upgrade from previous release
	Upgrade from 2.8 LTS

	Installation
	Hardware Specifications
	Dimensions and Weight
	Front View
	Back View

	Installation Prerequisites
	Rack-Mount Installation
	Power Supply Cabling
	Network Cabling

	Administrative Configuration
	Creating a Customer
	Creating a Subscriber
	Domain Preferences
	Subscriber Preferences
	Creating Peerings
	Creating Peering Groups
	Creating Peering Servers
	Authenticating and Registering against Peering Servers
	Proxy-Authentication for outbound calls
	Registering at a Peering Server

	Configuring Rewrite Rule Sets
	Inbound Rewrite Rules for Caller
	Inbound Rewrite Rules for Callee
	Outbound Rewrite Rules for Caller
	Outbound Rewrite Rules for Callee
	Emergency Number Handling
	Assigning Rewrite Rule Sets to Domains and Subscribers
	Creating Dialplans for Peering Servers

	Advanced Subscriber Configuration
	Access Control for SIP Calls
	Block Lists
	Block Modes
	Block Lists
	Block Anonymous Numbers

	NCOS Levels
	Creating NCOS Levels
	Creating Rules per NCOS Level
	Assigning NCOS Levels to Subscribers/Domains
	Assigning NCOS Level for Forwarded Calls to Subscribers/Domains

	IP Address Restriction

	Call Forwarding and Call Hunting
	Setting a simple Call Forward
	Advanced Call Hunting
	Configuring Destination Sets
	Configuring Time Sets

	Limiting Subscriber Preferences via Subscriber Profiles
	Subscriber Profile Sets

	Voicemail System
	Accessing the IVR Menu
	Mapping numbers and codes to IVR access
	External IVR access

	IVR Menu Structure

	Configuring Subscriber IVR Language
	Sound Sets
	Configuring Early Reject Sound Sets

	Conference System
	Configuring Call Forward to Conference
	Configuring Conference Sound Sets
	Entering the Conference with a PIN

	Customer Self-Care Interfaces
	The Customer Self-Care Web Interface
	Login Procedure
	Site Customization

	The Vertical Service Code Interface
	The Voicemail Interface

	Billing Configuration
	Billing Data Import
	Creating Billing Profiles
	Creating Billing Fees
	Creating Off-Peak Times
	Prepaid Accounting
	Fraud Detection and Locking

	Billing Data Export
	File Name Format
	File Format
	File Header Format
	File Body Format for Call Detail Records (CDR)
	File Body Format for Event Detail Records (EDR)
	File Trailer Format

	File Transfer

	Invoices and invoice templates
	Invoices management
	Invoice templates
	Invoice Templates management
	Invoice Template content
	Layers
	Edit SVG XML source
	Change logo image

	Save and preview invoice template content.

	Invoices generation

	Email templates
	Email events
	Initial template values and template variables
	Password reset email template
	New subscriber notification email template
	Invoice email template
	Email templates management

	Provisioning interfaces
	REST API
	SOAP and XMLRPC API

	Configuration Framework
	Configuration templates
	.tt2 and .customtt.tt2 files
	.prebuild and .postbuild files
	.services files

	config.yml, constants.yml and network.yml files
	ngcpcfg and its command line options
	apply
	build
	commit
	decrypt
	diff
	encrypt
	help
	initialise
	pull
	push
	services
	status

	Network Configuration
	General Structure
	Available Host Options

	Advanced Network Configuration
	Extra SIP Sockets
	Extra SIP and RTP Sockets

	Security and Maintenance
	Sipwise SSH access to sip:provider PRO
	Firewalling
	Password management
	SSL certificates.
	sip:provider PRO Backup
	What data to back up
	The built-in backup solution

	Recovery
	Reset Database
	Synchronize database
	System requirements and performance
	Troubleshooting

	Monitoring and Alerting
	Internal Monitoring
	Statistics Dashboard
	External Monitoring Using SNMP
	Overview and Initial Setup
	Details

	Cloud PBX
	Configuring the Device Management
	Setting up Device Models
	Uploading Device Firmwares
	Creating Device Configurations
	Creating Device Profiles

	Preparing PBX Rewrite Rules
	Inbound Rewrite Rules for Caller
	Inbound Rewrite Rules for Callee
	Outbound Rewrite Rules for Caller

	Creating Customers and Pilot Subscribers
	Creating a PBX Customer
	Creating a PBX Pilot Subscriber

	Managing a Customer PBX
	Creating more Subscribers
	Assigning Subscribers to Devices
	Synchronizing a PBX Device for initial Usage

	Configuring Sound Sets for the Customer PBX
	Uploading a Music-on-Hold File
	Uploading Auto-Attendant Sound Files

	Configuring the Auto Attendant
	Preparing the Sound Set
	Configuring the Auto Attendant Slots
	Activating the Auto Attendant

	Device Auto-Provisioning Security
	Server Certificate Authentication
	Client Certificate Authentication

	Device Bootstrap and Resync Workflows
	Cisco SPA Device Bootstrap
	Initial Bootstrapping
	Subsequent Device Resyncs

	Panasonic Device Bootstrap
	Initial Bootstrapping
	Factory Reset
	Subsequent Device Resyncs

	Yealink Device Bootstrap
	Initial Bootstrapping
	Factory Enable Yealink Auto-Provisioning
	Subsequent Device Resyncs

	Sipwise Clients and Apps
	sip:phone Mobile App
	Zero Config Launcher
	3rd Party Sign-Up Form
	3rd Party Launch Handler

	Mobile Push Notification
	Architecture
	Configuring the Push Daemon

	NGCP configs overview
	config.yml overview
	asterisk
	backuptools
	cdrexport
	checktools
	cleanuptools
	database
	faxserver
	general
	heartbeat
	intercept
	kamailio
	mediator
	nginx
	ntp
	ossbss
	pbx (only with additional cloud PBX module installed)
	prosody
	pushd
	qos
	rate-o-mat
	redis
	reminder
	rsyslog
	rtpproxy
	security
	sems
	sshd
	voisniff
	www_admin
	www_csc

